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ON THERMAL CONDUCTIVITY OF COMPOSITES
Abstract

£ Thermal conductivity of composites, made of highly
conductive metal fibres randomly distributed in low con-
ductive matrices, is investigated experimentally as well
as theoretically.

Experimental results are presented for a factorial
experiment consisting of five factors at two levels.
The factors are the length of the fibre, the cross
section of the fibre, the thermal conductivity of the
fibre, the thermal conductivity of the matrix, and the
fibre volume ratio.

‘(/It is shown that the most meaningful factors to be
considered for an optimum design of th&etypesof compos-
ites/in question(@re,’in the order of importance, the
conductivity of the matrix, the fibre volume ratio, and
the fibre cross section, :7

Earlier theoretical efforts consisted of mathemat-
ical models which are highly idealized, e.g. square
lattices, face centered cubic models (Maxwell, Rayleigh,
Bruggeman), <ﬁhe model used in this investigation is
that of a matrix filled with fibres, ellipsoidal in
shape and randomly distributed, according to prescribed
fibre volume ratios./ It is a stochastic model./ An
expression of the conductivity of this composite is
derived and results are obtained with the aid of a high-
speed computer.
model checks with experimental data, Also it shows that
additional factors are involved in describing composites
which are not covered by earlier theories.
are fibre geometry and its distribution.;7

Moreover, a specific specimen formulation gives a

thermal conductivity similar to that of stainless steels
but a density only a quarter of that of the steel.

xi

Theoretical prediction of the stochastic

These factors
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PART 1

INTRODUCTION

A. Historical Review

1, Theoretical

Published work to date has cast light only on certain theoret-
ical and experimental aspects of the thermal problems created by the
presence of several phases of aggregates in an elastic medium. The object
of this study is to describe experiments which serve to elucidate further
the theory of composite thermal problems and, in particular, to show the
significance of fiber geometry when metallic fibers are uniformly distrib-
uted in low thermal conductive matrices such as epoxies. The fundamental
equation of the thermal conductivity, and the basic relation which serves

as a definition of that term was proposed by Fourier! in 1822:

dT

where Q is the amount of heat flowing per unit time through an area A,
and the temperature gradient in a direction perpendicular to A is %% .
The law states that the amount of heat flowing per second per unit area
is proportional to the temperature gradient, and the proportionality
constant K is the thermal conductivity.

Equation (1) is well established for conduction in homogeneous,

isotropic solids and is also applied for a binary mixture with two phases

in alternate layers or laminae. In this mixture, neither phase is continuous




in one dimension, and both phases are uniformly continuous in the other

two directions. If the heat current is parallel to the laminae:
Kp = VR Kf + (1 - VR) Kp (2)

If the heat current is perpendicular to the laminae:

Ke Kp (3)
KB"

VR Ky + (1 = VR) K¢

where Ky is the effective thermal conductivity of the binary mixture;
VR, the fiber volume ratio; Kg, the conductivity of the filament; and
Ky, the conductivity of the matrix.

In 1892, Rayleigh2 and Maxwell3 proposed the dilute dispersion
equation from which many of the relationships of composite thermal conduc-
tivity are derived. The equation
Kg= Kc

¢ (4)

Kg-2 K¢ [R ¢ Kg-2Ke

is the basic equation obtained from references 2 and 3; subscript d
denotes the discontinuous phase; and €, the continuous phase. Lquation
(4) is found in many forms.

In 1935, Bruggeman4 developed the model of a cubical array of
uniform, solid spheres in a continuous medium where no limit is set on
the amount of the phases, and no phase is necessarily completely sur-
rounded by another, The equation obtained was

K| "'KB Kz —KB

Vg ————— 4+ Vg —————— =0 (5)
' K, +2Kg 2 Ky, —-2Kg



where the subscripts 1 and 2 refer to phase 1 and 2 respectively.
Bruggeman also derived, from the Rayleigh-Maxwell equation, another rela-
tionship applicable for dispersions of any concentrations®. lere the

particles of conductivity K; are dispersed in a continuous medium of

conductivity Kj:

|
K, -K K,
3 5
(1=vg)s ——2 [ 2} (6)
K=Ky Kg

In the same work, Bruggeman also derived an equation for a mixture with
cylindrical shapes parallel to each other and with heat current perpen-

dicular to the axis of the cylinders for a wide range of concentrations:

Ky -Kg Ky - Kg (7)
(Vg )y ———— + (Vg)y ———= 0
K, +Kg Ky -Kg

Equations (1) through (7) were then generalized for any shape of the

phases as follows>:

Ky = Kg Kz —Kg

Ky, +FKpg Ko + FKg

where the various values of the factor, F, result in the previously
discussed mixture equations for the different thermal models; i.e.,
F = 0 gives equation (3)
F =1 gives equation (7)
F = 2 gives equation (5)

F = gives equation (2)




Above models are based on exact mathematical calculations, but, in
practice, one seldom encounters such simple geometries for particles of
varying irregular sizes,

From 1935 and on, several intermediate formulae have been
proposed either empirically or on the basis of some simple models,

In 1940 and 1941, NeKrasov® and Bogomolov7 obtained expressions

for heat conductivity in two extreme types of packing particles (grains):

a. For the cubic packing:

0.9 - (VR ) (9)

2
[ZJ + (VR)m]

b. For the tetrahedral packing:

Kg = TKp

2

43 + 0. 3P
Kg = 3TKn (10)
P-26
where KB is the thermal conductivity of the particles

(VR)p 1s the volume ratio of the matrix
Kq is the thermal conductivity of the air gaps

p is the percentage of particle space (or porosity)

In 1961, Sugawara and Yoshizawa® developed an empirical rela-

tion between experimental values of Kp and volume ratio of matrix (or

porosity) (VrRIm; i.e.,

(11)
Kg = (I-A)Kp+ AKp

where 2n |
A= S b= n
2" — | 1+ vy |




and n 1is an empirical exponent which they calculated as 6.5 for their
sample.

In 1963, Brailsford and Major9 summarized the expressions for
the thermal conductivity of two phase media for various types of struc-
tures, by assuming that each particle of phase 1 is surrounded by a
region of material of phase 2, which is in turn surrounded by material
having an average conductivity equal to that which has to be calculated
(Figure 1}.

For the conductivity of a random distribution of solid spheres
in a continuous medium, they found (by assuming that the temperature

distribution in each region satisfies Laplace's equation §72T = ().

X

|- K, /K I-K, /K
L= {2y, —2 / | +V L2 (12)
> 2 +K, 7Kg | 2+ K, / Kz

where V; is the volume fraction of phase 1.

They also extended this model to determine the conductivity
of a system containing three or more different phases, for example, a
mixture in which spherical particles of material 1 or material 2 are

embedded in material 0. The thermal conductivity of this system is given
by:

3Ko 3Kq

KoVo+ K, V, ——0——— + K, V, ————
070 T T (2K 5HK)) 2 72 (2K, +K,)

+
(2Kg + K;) 2 (2Ky + Kp)

Kg= -
8 3K, 3Ky
Vot V| ————— + V




MATRIX

FILAMENT

Figure 1. Thermal Model Used by Brailsford and Major.




Equation (13) assumes that phase "0'" is continuous.,

From (13) they also deduced, by letting Ky = Kp, the conductivity
for a random two phase containing regions of both single phases in the
correct proportions, embedded in a random mixture of the same two phases,
having a conductivity equal to the average value of the conductivity of the

two phase assembly which is being calculated, i.e.,
2
Kg [6(—v,—v2 )] +Kyg [3vI (2K, —Ky) + 3V, (2K, - K | )]

(14)
+ K, Ky [3(v2 +v,)+|] =0

where Vo = 1 -V,

In 1967, Springer and Tsai10 introduced a thermal model which
takes into consideration the shape of the filaments and their geometrical
arrangement. The model is shown in Figure 2. The basic assumptions they
made are:

a. Constant temperature difference between X = + a

b. The total heat flow per unit length along the filament,
may be divided in three independent parts.

c. The temperature distribution at any local point in the
element satisfies VZT = 0,

d. The boundary conditions are:

at y =0, y=2D, K QI. =0
oy
at x =a, T=Ty, at x = -a, T =T

0, T= J%;Z = constant

at x




ARRANGEMENT OF FILAMENTS

FILAMENT

—— MATRIX

MATRIX
FILAMENT CROSS SECTION

Figure 2, Thermal Model Used by Springer and Tsai.




o e.

and matrix must be specified.

The condition existing at the interface between the filament

For zero thermal resistance at the interface,
T = Tn

KaT

K =
f man

f :;;’

m

where n 1is the direction normal to the interface.

With the above assumptions, the problem is then solved by

imposing a known uniform temperature distribution (AT) between x = + a

surfaces. For symmetrical packing arrays, the following general expression

was obtailned:

Ko (s +_9_fs dy (15)
Km 2b b o (2a-h) +(h Km/Kf)

Note that for a square filament (S = X = constant), a = b and

B _ . _ I (16)
Km—l ./ V¢ +

|/ Ve + B/ 2

for a cylindrical filament (S = d), a = b, hence

Kg | 4 .
—_— = -2 Vf/7T + — -
Km B VARICLRAVE (a7
V=082 Vg /)
tan®
| + VB2 v/
where
Km
=2 — =1
B <




10

In 1968, Behrens'! obtained thermal conductivity expressions by

12 into solid state

using the method of analysis introduced by Max Born
physics, where it is commonly known as the ''method of long waves'., It
consists in considering plane waves, in this case thermal waves, traveling
through the material with wavelengths which are long as compared with the
inter-component spacings. By calculating their damping coefficients in
the principal directions of the medium, explicit expressions for the
average thermal conductivities can be obtained.

For the composite with a rectangular lattice having two con-
stituents (and cubic particles), in the limit, Behrens gives:

Ke  (P+1) +(P-1) Vg 18)

(P+1) —(P-1) Vg

For the composite with cubic symmetry (with spherical

particles or inclusions), in the limit, Behrens gives:

B
Ko (P¥2) —(P-1) Vg

where P = Kf/Km.

In 1968, Hashini®

generalized the '"Self-Consistent Scheme"
or SCS method of approximation for analysis of effective properties of
particulate composites. The basic underlying assumption is that a typical

basic element of a heterogeneous medium, such as a single crystal in a

polycrystal or an inclusion in a particulate composite, can be regarded as

being embedded in an equivalent, homogeneous medium whose properties are ‘




the unknowns to be calculated. This model is the same as the one introduced

by Brailsford and Major in 1963. The general equation obtained by Hashin

is
2[2+c'+,8(i—c')]»<2—[2(|+2c')+B(|—4c')+
Q(B—l)vg] K—{zu—c')+,8(|+2c’)]=o
(20)
K K
where K= —2 , IB:-—E- , c'=_9§.
3
Ky K P
It is noted that if C' = 1, equation (20) reduces to equation (5), or
K, - K K, — K
] B 2 B
Vi ——————— + V, ——————— = 0 (21)
K, + 2Kg K, + 2Kg
If C* = V,, then
Va
Kg = K | | +
K Vi 22
+ (22)
KZ—KI 3

This equation is also a rigorous result for a very special geometry,

which is obtained when a volume is filled out ad infinitum with composite

spheres of variable sizes. In each composite sphere, the volume ratio of

the inner spherical core to matrix shell is V,, and the conductivities of

core and shell are K, and K; respectively.




Hashin, in his paper, introduced C' which he believed to be a new
geometrical parameter ''whose value is not easily assigned.™
NOTE: If a closer look is taken at C' = _Eg , 1t is found that C' is none
other than the volume ratio of the particlggto the matrix, and its value

has a range of 0 to 100 percent.

2, [Lxperimental

In 1789, Inger-Hauszl4 developed one of the first techniques for
measuring conductivities. The basic apparatus was of a comparative type;
identical bars of different materials were coated with wax, and one end of
the bars was heated at a constant temperature. When a steady state was
reached, the wax was melted to different distances from the source on the
various rods. By observing these distances, the relative thermal conduc-

tivities could be determined by the equation:

KI XIZ
= 2 (23)
Kz X

If the bars are of great length, the assumption of infinite length that is
necessary for this equation is nearly satisfied.
In 1861, Angstrom15 used the impulse method of measurement of
thermal conductivity. This method actually yields the thermal diffusivity,
= 7533 so that it is necessary to have an accurate knowledge of
specific heat and density as a function of temperature in order to determine

the conductivity. The basic apparatus is a long bar or wire with an

electric heater at one end. The other end extends into homogeneous surround-

ings of air or an insulating medium, A steady state temperature gradient ‘




is imposed on the specimen and a heat pulse varying sinusoidally with

time is superimposed on the hotter end. This temperature disturbance is

propagated down the bar at a rate that varies with the thermal diffusivity.
In 1867, Forbes16 introduced the '"Forbes Bar Method". ile used

a wrought iron bar one inch in diameter and eight feet long, one end of

which was in a bath of molten lead. The other end extended into still air.

Heat was lost from the surface of the bar by convection and radiation.

This introduced a longitudinal temperature gradient into the bar, and when

a steady state was reached, this gradient was measured. The basic equation

used was:

Q= KA — (24)

or, differentiating and rearranging:

(- L da |
A dX 4° T/ dx?

Following this experiment, the entire bar was heated to a high temperature
and allowed to cool while measurements of temperature were being made as

a function of time. In the cooling part of the experiment, the heat
radiated comes completely from the heat content of the bar. An accurate
knowledge of specific heat and density is necessary to find this thermal

energy. The energy lost per second from the bar per unit length is:

dQ _ dT (26)
dX CAp dt
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In 1900, Kohlrauschl7 devised an electrical method for determining
conductivity. He heated a rod by passing an electric current through

it while holding the ends at the temperature of the surrounding. The
method yields the ratio of thermal and electrical conductivities. The
latter may be determined independently and accurately, therefore, the
thermal conductivity is readily calculated. The necessary measurements
include (1) the potential drop between two points equally distant from
the midpoint, hence at the same temperature, (2) the tempcrature at
these points, and (3) the temperature, which is a maximum, at the middle

of the bar. The equation used was

X

(dV / dXx®) (27)
o J(d®T/d x?)

where

O is the electric conductivity (1/ohm)

V is the electric potential (volts)

J is the conversion factor

In 1935, Fitchl8 used a straightforward method of measuring
conductivity by maintaining a plate of material with one surface at a
given temperature, then measuring the temperature of the opposite surfacc
when a steady state of heat flow was obtained, lis apparatus was unique
in the use of a copper block for a calorimeter. This apparatus is quite
satisfactory for low conductivity materials, but for metals which have
high heat conductivities, only a small temperature drop is encountered
across the sample, leading to inaccurate conclusions. When one has a
simple, pressed joint between two materials, as between the heat source .

and the specimen, a large and variable temperature drop is noted. This
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drop often accounts for a large part of the temperature difference
that is measured in connection with such a determination. This method
is, thus, not particularly well suited for metals.

In 1952, The American Society for Testing Materialsi? prescribed
a method (Specs. C177-45) in which two plates of the material under test
are placed on opposite sides of a heater. Measurements of the steady state
temperatures of both sides of each plate gives data for the calculation
of the conductivity. The assumption is made that all of the heat generatéd
passes through these plates, and if a suitable guard heater is supplied
around the edges, this condition is approximately achieved.

In the same year (1952), Miko140 modified the parallel plate
method by using a hollow cylinder of the test material and by heating this
cylinder at the center., The heater is in the axial hole and suitable
guard heaters are provided at the ends. The quantity of heat flowing through
the material is known precisely with the experimental arrangement. The
conductivity is determined from the relationship.

Q In (ré /)

K =
2(T, — Tp) (28)

In a commonly used experimental arrangement, the exterior of the cylinder

is cooled by radiation either into the atmosphere or into a region of

elevated temperature. This method is called the Radial lleat Flow Method.
In combatting '"end heat-losses," Adams and Loeb21, in 1954, and

others have used a spheroidal shaped specimen that completely surrounds

an electric heater. This method is quite well suited for the investigation

of the conductivity of ceramic and insulating materials.




1o

In 1964, Goldsmid22 summarized the experimental methods and
results of measurements on solids and fluids, as well as theories of
heat conductions. From his discussion, it is evident that the modern equip-
ment for measuring thermal conductivity is still of tiie same type discussed
earlier, most of the work is devoted to improve the methods of measurcments
by making them simpler, extending their range of applicability and, above
all, by increasing their accuracy.

The two apparati used in this study are the thermoconductometer
and a comparative thermal conductivity measuring system which are descrihed

in detail in Part III.




B, Statement of the Problem

No thermal data on composite materials made of nigh conductive
metal fibers uniformly distributed in low conductive matrices is presently
available in the literature.

The property of interest in this study is the average thermal
conductivity as it varies in relation with the following parameters: length
of the fiber, cross section of the fiber, thermal conductivity of the fiber,
thermal conductivity of the matrix, and fiber volume ratio.

In addition to providing reliable thermal conductivity data, it
is desirable to construct a theoretical model which correlates the average

thermal conductivity and the aforementioned physical parameters.

17
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PART 11

THEORY

A, Thernmal Conductivity of Composite 'aterials

Tue following review 1s necessary to develop a stochastic thermal
conductivity model. Since the model is controlled by probabilistic laws,
this study investigates a collection of random variables from tiae point
of view of their intcrdependence and liniting behavior.

~

1, Probability of an lLvent

Let
X, V, X., v, 2., = outcomncs of a random cxperiment

5 = the set of all outcomes = outcowe space

[3= a family of certuin subsets of & = cvents
If [3 satisfies the following axions:
(Ll) Thc cutcone space and the enpty set are in %3 :
scf, Bep
(52) If each set of the finite or countablc scquence Ay, Az, ...
Aj .ve 15 in ﬁ; , then their union and intersection zre in ﬁg :
A €3 for i =12, U AiefS

(i)

I, 2;--n Aief3

(0

Ai é'lg for i

3 i a set \ is i tiien its complement is in :

(13) I7 a set A is 1n /8 , tilen 1ts comj ent is IB
AefS — A = s-nef3

then, ﬁg is called a Borcl ficld on 5. Note, again, that

g}

renresents a certain event
6 an impossivle event
A an event non - A

Afl B =08 = indicates that A and L are mutually exclusive (no

elements in common)
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AU B represents event A or B
ANB represents event A and B

A set function P(A) shall be called a probability measure on ﬁ;

if it satisfies the following axioms:

(Pl) For every A in ﬁ; , its value is a non-negative real

number P(A) 20 for A€
(r) P(s) = 1
(PS) If Ay Ay, o Aj’ ... is a finite or countable sequence

of mutual events, then
P(U A = (%P(Aj)

(i)

For A e [3 , the designation P(A) will be called the prohability of the

event A, HNote, again, that

a. P(A) + P(A) 1 (to prove this use PS and P,)
b. 0 < P(A) £1 for any event A (from a)
c. P(A) =0 [from S U 8 = S ==P(S) + P(8) = P(S)]

2, Drobability Distribution

hen a random experiment is studied, one would like to know
the set of all its possible outcomes (outcome space), the subsets of this
set to which probabilities are assigned (events) and, finally, the probabili-
ties assigned to these §ubsets.

A probability distribution is a triple (S, /3 , D) where £ is an
outcome space, [3 a Borel field on S, and P a probability measure on ﬁ; ,

hence, in order to know a probability distribution, each of its three

components S, [3 , and P must bhe given,




3. Continuous Probability Distributions and Probability Density

Let R, denote the n - dimensional Euclidean space.
A point in Ry is an n - tuple of coordinates (Xl, XZ .o X“)
and can be represented in the abbreviated notation:
(X1, Xo, oo X

n) = X

In R; (Line), any set defined by a < X £ b, where a and b are finite
real numbers, is called a closed interval.
In Ry (plane), sets of the form, a < X; £ b, ¢ £ X, S d are called
closed rectangles. In general, then, for any number of dimensions n > 1,
sets defined by a; < X; S Dby, ap £ X S by, ...oay £ Xy S by will
be called closed n- dimensional intervals.

A probability distribution (S,/S , P) is called continuous when
S is a Luclidean space R, [3 a Borel field containing all open and closed

intervals in R, and P is defined as follows:

If a function f;
(X, xz,...xn) = £(X)

has the following properties:
(Cy) £(X) 2 0 for all X € R

(C2) ]; £(X) dX exists for all A€fS

(C3) j&n £(X) dx = 1

Then, the probability mecasure P is defined as

P(A) = /Qf(X) dX for cvery A

and the function f satisfying Cy, Cp, Cg is called a probability density.

20
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The integrals in C2 and C, are n- dimensional integrals, and dX

3

denotes the n- dimensional volume elenment.

Remarks: The Borel field, ﬁ? in R,, contains all open and closed intervals,
and all elementary geometric regions, such as interiors of closed polygons,
curves in the plane, and solids in Rz, with their boundaries included or

excluded. So that

P(A) =ff(X) dx (29)
A

ascribes a probability to any such elementary geometric region. Further-
more, every bounded set Aé,B has a volume V(A) which, for all elementary
geometric regions, is equal to the usual volume of those regions,

One can also show that (29) assigns probability 0 to any
geometric region which has n- dimensional volume equal to zero. In partic-
ular, no matter what the probability density £(X), probability zero will
be assigned to single points or finite sets of points in Rj, to arcs of
curves or polygons in R,, to two-dimensional surfaces or pieces of such surfaces
in Rz, etc,
NOTE: Any function, g(X) on Rp, which has the properties Cl and C, and

such that

I= Lng(X) dX #0 (30)

may be used to obtain a probability density in the form:

f(X) = Kg (X)




for it follows from Cl and that I > 0, hence, writing K = 1/I, we have

1

f(xX) = ¢ T ) g(X) = K g(X) 2 0 for all X; from ()

,/;\ f{X) dX = K _/:\ g(X) dX exists for all A &€ B

and 1
/ £(X) dX = 7 f g(X) dX = 1 (31)
1 Ry

{n
so that f(X) satisfies C;, Cp, C3. The constant K = 1/1 is called the
normalizing constant.

4, Uniform Distribution

Let D be any domain in R, with finite positive volume:
0 < V() , V< +oo
The function

1 for X € D
g(X) =

0 for X € D

clearly has the property (,. It also satisfies (30) since

f g(X) dX = fl X =V

Ry D
and for any set AGB , we have

f g(X) dX =f g(X) dXx + f _g(X) dX =f 1 dX = V(AND)
A AND AND AND

which is finite since it is < V(D). By using the normalizing constant
K=1/V

we obtain the probability density. ‘




1/ V(D) for Xe€ D
£(X) = - (32)
0 for Xe D
The continuous probability distribution on R, with the probability

density (32) is known as the uniform distribution on D.

5. Cumulative Distribution Functions

For a one-dimensional random variable X, the function
F$)=P({X:XSS} ) = P(XSS)

is called the cumulative distribution function of X or the distribution
function (d.f.) of X.
or

F(S) is the probability of the event (the random variable X)
which assumes a value less than or equal to S.

For a one-dimensional continuous random variable X with the
probability density f(X):

a.

S (33)
F(S) = ‘/. f(X) dX
-

b. F(S) is a non-decreasing and continuous function of S, its

derivative exists at every point of continuity of f and, at every such

point, we have

dF(S) _
L2 -t (s (34)

23
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c. For every pair of real numbers, S; < S, the probability

of the event {51 <X < SZ} is

(35)
P(S <X£8S,)=F(S,)-F(s))

d, Also

lim F(s)
S+ -

lim F(S)
S+ @

"
o

6. Continuous n- Dimensional Random Variables

If (X, Y) has the joint probability density f(x,y), then the
marginal probability densities of x and y are:

+Q0

g (X) = /ﬂ f (x,y) dy
-0
o (36)
h(Y) =°[ f (x,y) dx
-0

7. Constructing the Model

Implementing a simulation model requires random numbers in order
to obtain random observations from probability distributions.

The first step is to construct the cumulative distribution

function

F(x) = P[.\' < x]
where x is the random variable involved. This can be done by writing the
equation for this function, or graphically plotting the function, or by
developing a table giving the value of x for uniformly spaced values of ‘

F(x) from U to 1.
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The second step is to generate a random decimal number between

0 and 1. This is done by obtaining a random integer number having the
desired number of digits (including any leading zeros) and then placing a
decimal point in front of it,.

The final step is to set P[X < x] equal to the random decimal

number and solve for x, This value of X is the desired random observation
from the probability function (Figure 3).
‘he following procedure is reccommended for locating the major

axis of the fibers in a cylindrical shaped modcl (Figure 4):

1. Determine r — the distance from the center of the base of the
cylinder (0 £ r £ R),

2. Determine 8 — the angle or location of a point on the basc
(0 £ 9 22T ),

3. Determine z — the height of the end point within the cylinder,

4. Introduce length of fiber 2.

5. Determine A —= the angular direction of fiber in a plane parallel
to the xy-plane (0< Q <27).

6. Determineqb~* the angular direction relative to the xy-plane
(0 ¢ <2m).
NOTE: 5 Random numbers are needed.

a. To generate random observations on the base of the

cvlinder, From the uniform distribution, the joint probability density
eleremre—

function

—gz in xF+y° = R2

f(x,y) =
0 (37)

elsewhere (e.w.)
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RANDOM
DECIMAL
NUMBER —>{— — — — — —

0 X
RANDOM
OBSERVATION

Figure 3. Illustration of Procedure for Obtaining a Random Observa-

tion From a Given Cumulative Distribution Function.




Figure 4.

A Fiber in a Cylindrical Shaped Model.
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transforms f(x, y) into g(r, ©) let x = r cos O
y = T sin @
g(r, €): f(x, y) IM
a(r, 0)
0, ¥ | = ‘ cos @ sin © =7
d(r, 6) -r sin ¢ T cos @
or g(r, 8) = I
Tr R€

The marginal probability densities of r and O are:

2T’ >
r
f(r) =f 2d8=—% where 0<r <R
o TR
and
R r |
L(0) =f———é-dr=— where 0< 8 < 27
o TR 2T

G(r)=/———dr=—— where o0<r<R
(o]

To generate random observations, see final step in paragraph 7,
Constructing the Model,

Let x = "'I;Z‘ , then
R

r=Rﬁ or

(38)

28
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Similarly, let

-1
- 0
= —_ then 0 =277 = F
y o y (y)
then
o = 1 =27u 0<u< 1 (39)

where x and u are different random numbers,

b, To generate random observations inside the cylinder, From

the uniform distribution, the joint probability density function (for

distributing points on a sphere)

1 . 2 2 2 2 0
7R inx +y +z R (40)
f(x,y,z) =
0 e.w,
let
X = T sin (‘TID cos ©
y = r sin qbsin 8
Z =T COS qb
then
r e) : f(x z) O(x,y,2)
g(r, qs. ) (x,y, ’ 5(r’qb' 53
sinqs cos @ sin ¢ sin © cosqs
d(x z . .
= r COS cos @ T COS sin @ -r sin
fapg b ¢ $
-7 sincﬁ sin @ T sin 4) cos 6 0

r? sin cf;
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or
8(r,¢), 0) = 5 r2 sin cf)
4 T R3
then
0<ao = 27
3rzsing_5 in OS¢S7T
g(r:¢: ) = 4TTR3
0Sr £R
0 e.w

The marginal probability densities of r,gb and 6 are:

2

-
2 .

h(r) =[j 3r smcrb 484 = 3r

o Yo 4 m R3 R

or
2
3 g in
h(r) = R
0
27T R 3 2 .
r° sin
g(¢3 =ff
o Yo 4 1 R3
or

I
o

g(®)

7TR?) r? sin
£(0) =/f_3;é
ovYo 4 TR




or
1 in 0S¢ 2T
£(0) =4 277
0 €.W,

The cumulative distribution functions of h(r), g(d)), and f(0) are:

[op)
)
R
]
Y
O\
-
n
-
o
-
o
-
1]
—
]
(2]
o
)

£(9)

o
o
N
[N
o
5

To generate random observations:

3 3
—— ~ = r —r -
for H(r) let C ._l;_ T =R v C
r=Cc-t @ = r 3/u T (41)
- 1 - cos qb .
for G(¢) — let b = —-—-2-—— —=COS ¢ =1- 2b
-1 -1
@= ¢ = cos (1-2b) =B (u)
-1 -1
@= B " (u = cos (1- 2u) 0= u =1 (42)
0 . _ _ -1
for F(0) — let a = 5T then @ = 27Ta = A (8)
b=t = zmy 0 € u <1 (43)

where u is a random number.
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Equations (38), (39), (41), (42), and (43) are used with the
length of the fiber to locate the axis of the fiber in space.

Once this axis has been located, its position in space has
to be established by introducing a new coordinate system.

c. Rotation of axis in three dimensions. From reference 23,

x' = ll X+mpy+n; z
y' = [2 X +myy+n, 2 (44)
A {3 X + m3y +ng z

where ( f, mj, ni, ... n3) are the cosines of the angles between ox’

and 0x, 0x’ and Oy, «esy 0z’ and 0z. The angles are in the direction of
increasing xi to increasing x/j, where (x3, Xp, x3) corresponds to (X,y,z),
and (x’i, x5, x3’) corresponds to (x’, y’, z’). It is now necessary to

obtain Ei: mi, n; for i = 1,2,3 in order to locate the new coordinate axes

4

X, Y, and z’.

Let
'Ei = cos O
m; = cosfgi (45)
n; = cos )y for i = 1,2,3

Recall that in paragraph 8, Constructing the Model, (6, r, z)
were generated to obtain (x4, Yo, Zo) which is the center of the new
coordinate system X', Y', and Z'(Figure Sa).

(1} To find X': Recall also that the angles &« andgb and the

length of the fiber L were generated; these three parameters &X)gé/ L) are

used to locate (x1, ¥y, z1), and to obtain cos @, cos/gl, and cos Y1,

(Figure 5b) ’




Z
. (Xo 15120 )
N
(A) —
6—"r |
~ay
X
(B) (Xi,%,2Zy)
L

Figure 5. Location of the Center and End Point of a Fiber.
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Then

Lx=Lcos¢cosa=xl-x0
Ly = L cosqb sin @ = ¥1 - Y0 (46)
Lz = L sinqb =21 -2
or
L L L
=X -7 . - _°
cos al - ’ CTOSIBI - cosy; = T (47)

(2) To find Y’ (Figure 6a): The equation of the plane per-

pendicular to a vector through (xq, yg, zg) and (x1, ¥y, zl) is

(%) = xg) (xy = x5) + (v ~yy) by ~yg) + (2, ~2)) (2, ~2)) =0 (48)

Y" is chosen so that it is always parallel to the x-y plane; hence zp =0

and (48) becomes
(x; - xp) (%9 = x5) + (yy =yg) (y2 -yp) =0 (49)
Let the distance between (xg, yg, 2g) and (x2, Y, zp) be - b; then
(xp - Xo)z + (yp - Yo)2 - {2 (50)
From (2) and (3):
=(ry ~yg) (ry - yp)

- = 51
X5 Xq (xl - xo) (51)

for X; # X

Substituting now (51) into (50):

(y1 - ¥0)" 2 - ¥0)? 4 (y, - yp)? = 12
(x1 - xg)<




(X2,Y2,2Zp)

1

b4
X
L(xl MZy)
(A)
(Xo,Y0, Zo)
Y
X
x’
4 z'
(Xg,Y0:Z0 (X2 ,Y2,22
(B)
/ / '
X

Figure 6. Rotation of Axes in Three Dimensions.
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or

(x; = %) 1 _ L]
(yo - vo) = ) (52)
V/(Xl - Xo)z + (g - Y0)2 v sz + Lzy

If x3 = x5 and y1 = yp, thenqb = 90°; hence xp = Xg, and yp = yg + )
(i.e., the Y and Y' are the same) (Figure 6b).
o
If x; = xy and y; =y,, then 8 = 90; hence y, = y, and

Xy = X5 - 3. Thus,

cosQy = 52_%_594 Cos[?z = Y2‘Y0; cosy , = z2 - 2 (53)

where

) - «v/fiz - x0)% + (y2 - yO)2 + (xp - z0)?

(3) To find 7' Knowing X" and Y’, z' can be found by
using the cross products:
2 = x x Y’ (54)
= [(x; - x) 1+ (yp -vyg) J+ (27 -29) K] x

Xg) 1+ (yp = vy 7+ (z2 - z0) k]

-
~~
~
(3]
1

-
+

= [(yy - vg) (z2 = zg) - (z1 - zp) (y2 - YOI
[(z] - zg) (xp - xg) - (x] - xg) (z2 - zg)] J +
[(xy = x0) vz - ¥g) * (yy - v9) (x5 - x0)] k
From preceding paragraph (2), z, = z,, hence
2" = - (21 - zg) (g - ¥p) i+ (21 -2p) (x2 - %) j +

[(x1 - x0) 2 - ¥g) - (y1 - vp) (x2 - x0)] k




=Cli+C23+C3E (55)
where
C] = Xz = Xg, € =Ygz = Y3 €3 = 23 - I
Then
cosQz = Sl cosB = _Cﬁ__, cos? , = 3. (56)
d 3 3 d
where

2
d = \/éi v ep? 4+ eg?

Paragraphs 8c (1), (2), and (3) give the new coordinate
system (X', Y', Z'), with the center at (xo, Yo zo), and the following

nine angles between (X, Y, Z) and (X', Y', Z'):

cos@, = X1 - X0 ; cosB =Y2 - Y0 ; cosY, =_21 - 20
1 L 1 L 1 T
cos @y = X2 = X9 l- xQ ; cosBz = Y2 = Y0 E ; cosYoy = 0 (57)
cosQz = 23 ~X0 ; cos ,83 =Y3°Y0 ; cosYy=23"2%0
d d d
where
2 2 2
L= [(x) =~ x)" + vy - yg)* + (zq - z0)“11/2
2 2 2.1/2
8 = [(xy = x0)" + (yy - yg) + (25 - z9) ]
2 2.1/2
d=[(x3 - %) + (y3 - yp)° + (23 - 20)"]
i L ing £il  formly i Lindrical To

generalize the fiber's geometry, it is assumed that the fiber has an

. elliptical cross section. Then, from (57), L = a, ‘!= b, and d = ¢ are
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the distances from the center of the ellipsoid (xy, yg, zg) to the
major vertex and minor vertexes respectively,

To place an ellipsoid or fiber in space, it is necessary
to generate 8, r, z, X, andC# according to a predetermined distribu-
tion function, and then calculate the nine angles describing the
relationship of the fiber or ellipsoid to the X, Y, Z axis.

The general equation of an ellipsoid is developed next,
The equation of an ellipsoid centered at the origin, assuming no
translations or rotations, is

HZ H2 !!2
(; ), (gz) . (22) - (58)

where 2a is the length of the major axis, and 2b = 2c the length of
the minor axis.
Including rotations from equation (44), and the translations:
X =x=-nh

y' =y -] (59)

z' z -k
The general equation of an ellipsoid, with respect to the X, Y, Z axis,

becomes:

(31 X'+ my y' +ny z’)2 (32 x' +my y' +mp z’)2
+

al b2
(60)

(I x +m,y +n z')2
3 3 3

2

c

where x’, y', z’ are given in (59), and (h, j, k) is equivalent to

(xgs ¥g» 20)-




Once the fibers are generated, they have to be placed in a
predetermined volume (in this study, a cylindrical volume) to simulate,
for instance, an experimental specimen, To obtain a realistic
specimen, with uniformly distributed fibers, it is necessary to reject
any fiber which intersects another fiber (i.e., a fiber cannot occupy
the volume of another one) or intersects the specimen's boundary.

e. Method of finding the intersection of two fibers. Assuming

two ellipsoidal fibers are given with centers at (hy, jji, kl) and (hy, jo,
kp), let a > b, and a > ¢, then the following two conditions must be
satisfied before the two fibers are checked for an intersection:

[y - h% + (g - ip? + g - k1Y% < 2a (61)

and

2
[hy - hp? + G - 2+ (kg - kpAY? 2 2c (62)

NOTE: If [(h, - hl)2 + 3y - jl)2 + (ky - k1)2]1/2 2 2a, there is no
possible way for the fibers to intersect, and the second fiber is kept.
If [(hy - hp)? + (G2 - jP? + (k2 - k1)?] < 2c, then the two fibers
will intersect. The second fiber is discarded, and another one is
generated.

When another fiber is generated, assuming that it satisfies
conditions (61) and (62),the following procedure is used to determine if
the fibers intersect:

Represent the fibers as vectors Vl'and V} (Figure 7), where

Vl =a; I+bg J+cy k (63)
and
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J, (hplprky)
| — L V.
s — a—
.)‘\ \
\ 1 1 PZ( X2 ’Y2 ’22 )
£ QXN Zy)
Vs

Figure 7. Representation of Two Random Fibers.
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Vy = apl + byj + ok (64)

Let Py (X3, Y1, 23) and Py (x2, y,, 22) be the end points of
fibers Vl and Vz respectively; Py and P,, then, determine the vector

12°

In plane geometry, nonparallel lines intersect. In solid
geometry, however, it is possible to have nonparallel lines wihich do not
intersect. In the following analysis, the perpendicular distance, d,
between nonparallel lines is investigated. If the perpendicular distance,
d, between the two vectors containing the fibers is zero, then Vl and Vz
intersect; if d#0, but is less than the minor axis of the fibers (i.e.,
b anc c), then Vl and VZ, or the fibers, are ''skew'",

In the latter case, the coordinates of the end points of the
perpendicular distance must be found to actually determine if the fibers
do intersect. That is, if the coordinates of the intersections lie with-
in the end points of both fibers, the fibers intersect; otherwise, there
is no intersection,

The perpendicular distance between Vl and 62 is

. V; X Vo,
d= |P R ———=— (65)
I 1 X Vzl

The coordinates of d are found next.
Let a plane, p, pass through the point Q; (x2, yp, z2), and
let the vector V4 be normal to p:

V4 = Vz X V3 = a4i + b45 + C4R (66)

where
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V.=V, x ¥, (67)

(93]

Since the vector P, Q is perpendicular to V4, then

Vy « PpQp=0

hence
(a41 + bgd + cgK) . [(x; = x )i+ (yp - y2')3 + (22 - 22 )K] = 0
or

ag (x5 - x2") +bg (yp - y2') + ¢4 (22 - 22°) =0

The equation of the plane, p, can be rewritten by multiplying

and transposing terms not containing the variables:

ag xp + by ya *cqzp = agxy +bgyy ez

or

1l
e}

aqg x2 + bg y2 + cq 22 (68)

The symmetric form equations for a straight line which passes
through P; (xl, Y1 zl), having the direction Vl’ can be written in the

form:

’

X1 -x)" _ oy -vy1® o_zp -2
T

(69)

a1 1 €1

The simultaneous solution of equations (68) and (69) yield the
coordinates of Q-
The coordinates of Q, are found as follows:

A unit vector in the direction of Q; Qp is

<|
w

since Q; Qp has a length, d, then .

| V|
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Vs = Q] Q = d T - agi + Dgj + csk (70)

or

Qp Q2 = (x - X1+ -y DT ey - 2Ok

Then, the solution set (xz', y2', 22') is obtained by

X' = xl’ - ag

y,' = yl' - bg (71)
4 /

22 = Zl - C5

Equations (64), (68), (69) and (71) are then used to dctermine
if two fibers intersect.

f. Method for determining whether or not a fiber is entirely

contained within the prescribed cylindrical model. The parts to be

considered are the top and bottom of the cylinder and the cylindrical

envclope itself.

(1) If the z distance of the end points of the fiber generated
is less than the length (L) of the model and greater than zero, the fiber
is accepted; otherwisc, it is rejected.

(2) If the x or y distance of the end points of the fiber
generated is less than the radius (R) of the model, the fiber is accepted;
otherwise, it is rejected.

8. Thermal Model

Once the fibers have been placed in the cylindrical volume, a

method has to be devised to obtain the thermal conductivity of the

composite model. The first step is to subdivide the system into a number




of small but finite subvolumes, and assign a reference number to each.
The second step consists of writing heat-balance equations for each
subvolume and then generalize the results.

The simplest case of a one-dimensional heat flow, namely
heat conduction through a subvolume, will be treated. It is assumed
that the system is exposed to a high temperature medium, i.e., a heat
source of known and constant temperature on one side and a low-tempera-
ture medium, i.e., a heat sink of known and constant temperature on the

other side. Each subvolume is assumed to have an isothermal boundary

at face A (Figure 8), (i.e,, since T_=T_ = Ta’ heat can only flow along

2 3

the fictitious channel) and on insulated surface Sl, (i.e., no heat is

transferred from S; to S, or SS)°

If the line, zj, is dropped through the center of the subvolume,

it will intersect the fibers at points 1, 2, 3, etc.. Once these points

are found, the channel is further simplified as shown in Figure 8, and the

steady-state heat conduction equation can now be applied.

) KBIA,AT (72)
Q' - L_
where
A = channel cross-sectional area
AT = Ty - Tp
Kg = Thermal conductivity of channel 1
1
L = length of channel and/or model
L¢ = length of fiber material
L, = length of matrix material
Let
. Q' KaAT
Q = = = constant
A L
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then
. H
(AT) matrix = (}3 [(Lm)1 + (Lm)2 + oeee 4 (Lm)n]
m
QII p
- = ) G
n=1
p
1t
(AT) fiber = %.%__. z (Le)y
n=1
or
P y T
IV j ‘ Q Z
AT - (Lm)n + K (Lf)m
n=1 m=1
then
p r
éﬁ%_ = 3;_. (Lm)n + l—— (Lf)m = E——
Q Km Kf KBI
n =1 m=1

which can be rewritten as:

P T

1 - 1 1 g o1 E

KB I [Km (Lm)n Kf (Lf)m]
n=1 m=1

Let Vp_ be the volume fraction of the fiber material, then

(73)

(74)

(75)
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T
Ry L f'm (76)
m=1
note that VRl = 1 when Z(Lf)m = L
or ' y
1 vR1 1 - VR1
r— = +* ,, 77
K5, K7 K- (77)

Knowing then VRl, Kf, and Ky, KBl can be found.
The same procedure applies to the other channels. When K ,
1
KBo"'"KBn are found, the overall average, K;, of the model can be

obtained.

a. To find fiber material in each flow channel. For various
lines parallel to the z - axis from z = 0 to z = L, it is desired to
determine the points of intersection between these lines and the ellip-
soids. The base circle of the model, X%+ y2 = RZ, is divided into N
parts (each part should be < the cross sectional area of the given fiber),
with lines going through the center of each part (Figure 8). The z's
denote the lines. To determine the intersection of a line with an ellip-
soid, we proceed as follows: assume a particular line has x and y

coordinates of x and y. This line has to be solved with every ellipsoid

in the direction of the heat flow (z - direction), If there is no solution,

there is no intersection. If there is a solution 71, 72, |z2 - le is saved,
This is done for all lines within the circle.

b. Intersection of flow lines with fibers. Equation (63)

is solved for z:

-b + VL 2. 4 3¢ (78)

3]
n




where

b = Ex + Fy

2 2

C = AX“ + By + Dxy + Gx + Hy + I
In this study, H =G =1 =0
Solving now (60) for z' in terms of x' and y', the following valuecs for

a, b, and c are obtained:

= b2 c2 n12 + a? c2 n22 + a2 b n32

o
1

2 2 2

b =2 [n; b" ¢ ( elx' +myy’) +n, a c? Bzx' + oy )+

nz a? b2 ( £3x’ + mzy’)]
(79)

2
b2 C2 (21)(/ + mly/)‘- + a2 CZ ( B xl + mzy/) +

[e]
1!

a? 2 ( ESX’ + mzy’) - a2 b2 2

A computer program is provided in Appendix A to find the
overall average thermal conductivity, Ky, when the following is given:

a. Fiber geometry.

b. Model geometry.

c. Overall fiber volume ratio.

d. Thermal conductivity of the fiber.

e. Thermal conductivity of the matrix.
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B. Discussion of the Planning and Analysis

of Comparative Experiment

1. General Consideration in Planning the Thermal Conductivity Experiment

of Composite Materials

a. The nature of experimentation. An experiment has been de-

fined, in the most general sense, as "a considered course of action aimed
at answering one or more carefully framed questions." In the study of
Thermal Conductivity of Composite media, however, we are concerned with

a more restricted kind of experiment in which the experimenter does
something to at least some of the things under study and then observes
the effect of his action. The things under study which are being delib-
erately varied in a controlled fashion may be called factors. These
factors may be quantitative factors, such as temperature which can be
varied along a continuous scale, or they may be qualitative factors,

such as different compositions of matrix and fibers. The use of the prop-

er experimental pattern aids in the evaluation of the factors. Many books

have been written on the general principles of experimentation; the
book by Wilson?4 is used in this analysis. There are certain character-
istics an experiment obviously must have in order to accomplish anything
at all:
(1) There must be a clearly defined objective:
(a) Choice of factors, including their range.
(b) Choice of experimental materials, procedure,

and equipment.

(c) Knowledge of what the results are applicable to.
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(2) As far as possible, effects of factors should not be
obscured by other variables. The use of an appropriate experimental
pattern helps to free the comparison of interest from the effects of
uncontrolled variables and simplifies the analysis of the results.

(3) As far as possible, the experiment should be free
from bias. Some variables may be taken into account by planned group-
ing; for other variables, the use of randomization is desirable.

(4) An experiment should provide a measure of precision
(experimental error). Replication provides the measure of precision;
note that randomization assures validity of the measure of precision.

(5) The experiment must have sufficient precision to
accomplish its purpose set forth in requisite (4). Greater precision may
be achieved by refinements of the experimental pattern technique.

b. Experimental pattern. A common experimental pattern is the

so-called factorial design equipment, wherein we control several factors
and investigate their effects at each of two or more levels. If two
levels of each factor are involved, the experimental plan consists of
taking an observation at each of the 2" possible combinations.

c. Planned grouping. An important class of experimental

patterns is characterized by planned grouping. This class is often
called block designs. In engineering research, the tool of planned
grouping can be used to take advantage of naturally homogeneous groupings
in materials, machines, etc., or '"background variables'" which are not
directly 'factors'" in the experiment, Statisticians have developed a
variety of especially advantageous configurations of block designs,

named and classified by their structure into randomized blocks, Latin
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squares, incomplete blocks, lattices, etc., with a number of sub-
categories of each.

d. Randomization. Randomization is necessary to accomplish

requisites (3) and (4) in preceding paragraph a. In order to eliminate
bias from the experiment, experimental variables which are not specific-
ally controlled as factors, or "blocked out" by planned grouping,

should be randomized, e.g., the allocation of specimens to treatments

or methods should be made by some mechanical method of randomization.

Randomization also assures valid estimates of experimental
error and makes possible the application of statistical test of signifi-
cance and the construction of confidence intervals,

"Randomization may be thought of as insurance and, like
insurance, may sometimes be too expensive."

In general, we should try to think of all variables that
could possibly affect the results, select as factors as many variables
as can reasonably be studied, and use planned grouping where possible,

e. Replication. Replication (repetition) provides the
measure of precision, an opportunity for the effects of uncontrolled
factors to balance out, to aid randomization as a bias-decreasing tool,
and to spot gross errors in the measurements,

2, Factorial and Fractional Factorial Experiments

a. Some general remarks. In the experimental study of the

average conductivity (K;) of composite materials, we are interested in
investigating the effect of length (i), cross section (a x b) of the
fiber, thermal conductivity of the fiber (Kf), thermal conductivity of

the matrix (Km), volume ratio of the fiber in the matrix (VR), on (KB),
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assuming a random distribution of fibers in the matrix.

The factors involved are then J , axb, Kes Km, and VR;
each specific value of the factors will be called a level.

In the past, one common experimental approach has been
the so called "one at a time' approach, This kind of experiment would
study the effect of varying "factors" one at a time, keeping the others
constant. The results of such an experiment are fragmentary in the sense
that we have learned about the effect of different levels of factors at
one factor only and vice versa. In statistical language, there may be an
“interaction' effect between the two factors within the range of interest,
and the "one at a time' procedure does not enable us to detect 1t,

Factorial experiment is the name commonly applied %o an
experiment wherein we control several factors and investigate their
effects at each of two or more levels. In the analysis of factorial experi-
ments, we speak of main effects and interaction effects. 1ain effects of
a given factor are always function of the average response at the various
ievels of the factor. In the case where a factor has two levels, the
main effect is the difference between the responses at the two levels
averaged over all levels of the other factors. If the difference in the
response between two levels of factor A is the same regardless of the level
of factor B (except for experimental error), we say that therc is no inter-
action between A and B, or that AB interaction is zero.

If we have two levels of each of the factors A and B, then
the AB intecraction (omitting experimental error) is the difference in
the responses of A at the second level of B minus the difference in the

response of A at the first level of B, In general, if we have a levels of



the factor A and b levels of the factor B, then the AB interaction has
(a-1) (b -1)
independent components,

For factorial experiments with three or more factors,
interactions can be defined similarly. For instance, the ABC interaction
is the interaction between the factor C and the AB interaction (or
equally between the factor B and the AC interaction, or A and the BC
interaction}.

b. Internal estimates of errors. As in any experiment, we

must have a measure of experimental error to use in judging the signifi-
cance of the observed differences in treatments. In the larger factorial
designs, estimates of higher-order interactions will be available. The
usual assumption is that high-order interactions are physically impossible
and that the estimates so labelled are actually estimates of experimental
error. As a working rule, we often use third and higher-order interactions
for error. The judgement of the experimenter will determine which inter-
actions may reasonably be assumed to be meaningful and which may be assumed
to be nothing more than error. These latter interactions may be combined
to provide an internal estimate of error or a factorial experiment of
reasonable size. For very small factorials, e.g., 23 or smaller, there
are no estimates of high order interactions, and the experiment must be
replicated in order to obtain an estimate of error from the experiment
itself.

In the case of fractional factorials, there is obviously no

point in replication of the experiment; further experimentation would

probably be aimed at completing the full factorial or a larger fraction

53




of the full factorial.
¢. Symbols. To identify each of the trials, in the factorial
experiment of Ky, the following notation is adapted:

A factor is identified by a capital letter, hence:

!

= A
axb = B
Kg =¢C
K, =D
VR = E

and the two levels of a factor by the subscripts: '"zero'" and "one". 1If

we have five factors, A, B, C, D and E, then the corresponding levels of
the factors ar Ag, Al; Bg, Bl; Cos Cps DO’ Dl; Ey, Ey; respectively. By
convention, the zero subscript refers to the lower level, to the normal
condition, or to the absence of a condition, as appropriate. A trial is
respresented by a combination of small letters denoting the levels of the
factors in the trial. The presence of a small letter means that the

factor is at the level denoted by the subscript 1. The absence of a letter
means that the factor is at the level denoted by the subscript zero. Thus
the symbol "a'" represents the treatment combination where A is at level Ay,
B is at level By, C is at level Cy, ete. The symbol '"bc" represents the

treatment combination where A is at level AO, B is at B C is at Cl’ etc,

1’
Conventionally, the symbol (1) represents the treatment
combination with each factor at its zero level. In our case, having five
factors, each at two levels, then
2 = 32

combinations, and the 32 trials, are represented by
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a, b, ab,
¢, ac, bc, abc,
d, ad, bd, abd, cd, acd, bcd, abced,
e, ae, be, abe, ce, ace, bce, abce,
de, ade, bde, abde, cde, acde, bcde,
abcde.
NOTE: 1. The treatment combinations are obtained by multiplying the
new element by all previous treatment combinations.
2. The number of observations represents the average conductivity
(Kg) obtained from a predetermined combination of factors.
Figure 9 summarizes the complete factorial experiment.
Explanation of Figure 9:
Sample 1 is equal to Ay, By, Cos Dgs Eg
Sample ¢ is equal to A;, By, Cq, Dp, Ep
Sample abcde is equal to Ay, By, Cj, Dy, E;

The specimens used in this study are shown in Figures 10 and 11 where

{ ) AO = (0.062"
Ay = 0.125"
BO = 0,005" X 0.005"
axb =
Bl = 0,015" X 0.015"
- -1 -1
K Chp = 368 Wm "~ deg {Copper)
f S ¢y ‘= 210 Wmn-l deg-l (Aluminum)
D, = 0.238 W n~1 deg~! (Epoxy)
n D; = 0.365 W m~1 deg-1 (Epoxy - Titanium powder)
E, = 20%

El = 40%
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Figure 9. Factorial Design With Five Factors at Two lLeveis.
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Factorial Design With Five Factors at Two Levels (3/4 Inch Sample).

Figure 11,




The object is now to find the estimated main effects and interactions
which also appear in a standard order:

T, A, B, AB

C, AC, BC, ABC etc...
where

T corresponds to the overall average effect

A corresponds to the main effect of factor A

AB corresponds to the interaction of factors A and B, etc.

d. Estimation of main effects and interactions. Yates' method

is a systematic method for obtaining estimates of main effects and inter-
action for two-level factorials. The method was originally described by
Yates25 and may be found in various textbooks.26' 27

The systematic procedure for Yates' method is as follows:

(1) Make a table with n + 2 columns. In the first column,
list the treatment combinations in standard order.

(2) In column 2, enter the observed response corresponding
to each treatment combination listed in column 1.

(3) In the top half of column 3, enter, in order, the
sums of consecutive pairs of entries in column 2. In the bottom half of
the column, enter, in order, the differences between the same consecutive
pairs of entries, i.e., second entry minus first entry, fourth entry minus
third entry, etc.

(4) Obtain columns 4, 5 ..., n + 2 in the same manner as

column 3; i.e., by obtaining in each case the sums and differences of the

pairs in the preceding column in the manner described in step 3.
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(5) Tie entries in the last column (column n + 2) are

called Bps Ers Z5 Lays etc., corresponding to the ordered effects T,

& ,’\ bl
A, B, AB, etc., lstimates of main e¢ffects and interactions are obtained
X ... ) . .., 0=l Lo .oon-1 . .
by dividing the appropriate g by 2 - By divided by 2 is tne overall

m2an, Note: The remaining steps of this procedure are chechs on the
computation,

{6) The sum of all the 2" individual responses (column 2)
shiould equal the total given in tne first entry of thc last column
(column n + 2).

(7) The sum of the squares of the individual responses
{column 2) should equal the sum of the sqguares of the entries in the last
column (column n + 2) divided by 2n.

(8) Tor any main effect, tie entry in the last column
(column n + 2) equals the sum of the responses in which that factor is at
its higher level minus the sum of the responses in whicin that factor is at
its lower level,

e. Testing for significance of main effects and interactions.

(1) Choose @ , the level of significance. (Sec Appendix D).

(2) If there is no available estimate of the variance due to
experimental error, find the sum of squares of the g's corresponding to
interaction of three or more factors.

oy e @2 e ‘ e

(3) To obtain S, divide the sum of the squarcs obtained in

. . . . . n

step 2 by 2" v, where V 1is the number of interaction included. 1In a 2

factorial, the number of third and higher interactions will be

vy = 2" . (nz +n + 2) (80)

o |
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If an independent estimate of the variation due to experimental error

. . .,
is available, use this S<,

(4) Look up ty _ @/2 for @ degree of freedom.28 If

higher order interactions are used to obtain Sz, V 1is the number of

. . . . . 2 . .
interactions included. If an independent estimate of S° is used, VvV is
the number of degrees of freedom associated with this estimate.

(5) Compute the range V:

n 1/2

W= (27) (81)

t S
1 - Q/2

(6) For any main effect or interaction X, if the absolute
value of gy is greater than W, conclude that X is different from zero;
e.g., if fgal > W, conclude that the A effect is different from
zero, Otherwise, there is no reason to believe that X is different
from zero,

(7) Yates' method for obtaining estimates of main effects

and interaction for two-level factorials can be found in Appendix C.
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C. Specimen Fabrication and Processing

1, Introduction

The impact and widespread use of fiber reinforced plastics to
date has been largely due to development of specialized fabrication
techniques by the manufacturer. If components with certain specified
characteristics, such as the specimens used in this study, are desired,
the manufacturer does not know what to do, and their suggestions are quite
expensive. It is, then, believed that in the futurc composite, fabrica-
tion will no longer be the sole province of the manufacturer, since it nas
become increasingly clear that tlie designer and fabricator must work to-
gether as part of an integrated effort if the full potential of fiber
reinforced composites is to be realized for structural applications. Each
must rely on the other for guidance. Future structural requirements will
be too high to be met by the traditional empirical approach of the mold-
ing shop. In turn, optimization of design is meaningless if it results in
a structure that cannot be produced.

2, Materials

Each material has its own peculiar characteristics which deter-
mine its utility in composite and which dictate how the composite must be
processed. For instance, screw plasticization of thermosets results in a

frozen screw.

The properties of each component must be understood in order
to capitalize on its desirable properties and avoid degrading tiie result-

ing composite through its misuses. The materials used in this study are:
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. . . 29 a1 .
a. Thermosetting resins: epoxies, Enlarged ten million times,

the molecules of these resins might resemble short pieces of thread, vary-
ing in length from half an inch in some of the liquids to several inches in
the solids. When cured or hardened, these threads are joined together at
the ends and along the sides to form large, cross-linked structures. [Lach
molecule 1s tied to several others, like the rope of a fish-nct or the
filaments of a spider's web, but in an irregular, rather than neat, pattern.
If the final products are solids, they may become soft when heated, but

will never again liquify. The thermosetting specimens used in this study
are made of Epon 828 and Versamid 140 in the ratio of 60 and 40 respectively.

"Lpon 828" is manufactured by the Shell Chemical Corporation; it
is a liquid, aromatic epoxy in which "diepoxide 0" is the predominant com-
stituent (the "0" indicates the absence of hydroxyls).

Amine type compounds are the most widely used of all curing
agents for epoxies. They are fast curing in room temperature, cheap, low
in viscosity, readily miscible. When cured, epoxies tend to be brittle.
Toughness, the opposite of brittlencss, depends upon both tensile strength
and elongation, If the stress-strain behavior of the material is mcasurcd,
then the stress at break is the tensile strength; the strain at break is
the clongation; and the area under the curve, the work input, is the
toughness. Unmodified epoxies, highly cross-linked with aromatic amines,
are hard materials with high tensile strength but low elongation. At the
other extreme, with moderate elongation but low tensile strength, are
materials such as swiss cheese. Both have low areas under the stress-strain
curve; both are brittle. Somewhere in betweén, combining strength and

stretch, are tough compositions needed in many industrial applications.
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Different approaches have been uscd to provide more stretch without
lessening the tensile strength. The '"Versamid" resins have heén used
in this experiment as the curing agent for Epon 828. The "Versamid"
resins are viscous, brown liquids developed commercially by General
}Mills, Inc. The following advantages are found when used in epoxy formu-
lations:

(1) Wide range of compatability with epoxy resins.

(2) Long working life.

(3) Convenient handling without need for solvents.

(4) No need for volatile, toxic, explosive, or
temperature sensitive curing or accelerating agents.

(5) Low reaction temperature, therefore, they can be cast
in large volumes.

(6) Low shrinkage on cure and exceptional dimensional

stability.
(7) Ixcellent resistance to mechanical impact or shock.
(8) High flexural, compressive, and tensile strength.
(9) Exceptional resistance to thermal shock.
(10) Cood electrical resistance.
(11) Excellent adhesion and bonding to a wide variety of
materials.

(12) Good machineability.
(13) Possibility for a wide range of properties - from hard
and strong at one extreme, to soft and resilient on the other.

b. [poxy - titanium powder. This combination was chosen because

of the excellent adhesion and bonding properties of the epoxy resin (Epon ‘

828 - Versamid 140) to the powder and the fibers,



c. Reinforcing agent. The reinforcing agent is, as the term

implies, the primary load or heat carrying component. Consequently, for
both efficient performance and cost effectiveness, it must be selected in
terms of type, form, and quantity to meet the specific need.

In this study, discontinuous copper and aluminum fibers were
used to increase the thermal conductivity of the matrix resins.

3. Manufacturing Setup and Fabrication Techniques

Fiberglass reinforced plastics (FRP) are, by far, the best
developed and understood of man-made fibrous composites. Hore types of
composites are prepared and more resins used with glass fibers than with
any other reinforcing agent. Consequently, review of the fiberglass rein-
forced plastics technology serves to summarize the state-of-the-art for
composite fabrication and processing,

The principal FRP fabrication methods can bec conveniently
divided into open mold and closed mold processes, Generally speaking,
tiie open mold techniques can be characterized as yielding larger, higher
performance composites, requiring more labor but less investment, having
a slower production rate, and being highly dependent for quality on
operator skill,

The closed mold processes, on the other hand, yield more
reproducible composites but require much higher investment.

In this study, a closed mold process had to be used to obtain
specimens specified by the factorial experiment. Figures 12, 13, and 14
show the ingredients and setups for manufacturing tiie specimens., The
main design consideration is that of a smooth surface so that the parts

can be easily released from the mold, It is also essential that the molds
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be rigid so that the dimensions of the part can be controlled., In this
study, the molds were made of forged tool steel, hardened and polished.
The vacuum casting technique with hot-pressing was used in the process of
the specimens (Figures 12, 13, and 14). The main advantage of this
process is the ability to make specimens free of voids.

The following steps should be taken to manufacture experimental
specimens:

a. Decide on the size of the mold and obtain the total volume
(V) of the finished specimen,

b. Weigh fibers, as specified by a predetermined volume
ratio, per equation:

We = ,£1>r VT VR (82)

where
Weight of fibers

H;‘
u

e
rH
"

Density of fiber material

Total volume of finished specimen

<
-3
n

Vy = Fiber volume ratio

c. Place fibers loosely in the mold.

d. De-air matrix material by placing the proper amount of
Epon 828 and Versamid 140 (in different cups) in a dessicator,

e. Mix the portions of Epon 828 and Versamid 140 and de-air
again,

f. Pour this matrix on the loose fibers.

g. Start vacuum pump to wet fibers.

h., As soon as matrix shows in trap flask, stop pump, remove

copper tubing from the mold, and set up the mold in a press.
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i. DPlace heating element around the mold, start pressing
fibers to the predetermined Vp, and leave in that position for twenty
minutes.,

j. Remove specimen from nmold.

k. If a check on the volume ratio is desired, weigh composite

specimen and use the following equation for VR:

Y
m
Ve = =L (83)
R ~ 3
/%" F%
where
I7 = Weight of specimen
Vo = Total volume of specimen

o
n

Density of fibers

Pn = Density of matrix
i

NOTE: In this study: (1) The finished specimen was cut into two samples,

1/4" and 3/4" respectively (Figure 15 and 16). (2) The volume ratio

of Lpon 828 and Versamid 140 is 60/40 resnectively. (3) The volume ratio

of Lpon 828, Versamid 140, and Titanium powder is 48-32-20 respectively.
The following list shows some types of defects in the finished

product and the possible causes:

Defect Possible Causes
Blisters Cure to rapid, mold too hot, moisture in

resin or fillcr.

Pin holes, pits and voids Poor mold surface, entrapped air, in-
sufficient pressure, dirty mold,

Sink marks Cure too rapid, mold too hot, insufficient
pressure, poor port design, .




igurs 15,

Enlarged View of a 1/4 Inch Specimen.







Defect

Crazing

Exposed Fibers

Color variation

Delamination

73

Possilile Causes

Pesin-rich areas caused by poor fiber
distribution,

Fibers content too high, poor fiber
distribution, too much mold lubricant,
mold too hot,

Poor fiber distribution.

Poor impregnation, fiber content too
high.
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Schematic of Colora Thermoconductometer.

Figure 17.
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will have been reached. The time taken for distilling 1 ml of liquid ‘
to O-mark 9 is determined with a stopwatch. The thermal conductivity

Kg is then given by

. ]
}:B = 9_ SES— © .{ZL
t . (Ty - Tp) A
(84)
- L cal/cm sec °C
R . A
where
Q = Heat of vaporization for 1 ml of liquid B
t = Time in seconds for distilling 1 ml
TA - TB = Temperature difference in ° C which is given by the
) boiling points of the two liquids
L = Sample height in cm
A = Sample cross-section in cm?
R = Heat resistance of sample sec ® C/cal

In this way, a determination of the absolute thermal conduc-
tivity can be made in a few minutes by a simple time measurement, When
a number of calibrated sampies are available, Kg can be determined more
easily by a comparative measurement without knowing the exact values of
the boiling point and the heat of vaporization of liquid B.

b. Construction of the apparatus., A higher boiling liquid

A is boiled by an electric heater 1 at the bottom of the glass apparatus.
The vapor passes upward through pipe 3, impinges on stopper 4, flows to
condenser 6, and returns as a liquid to the same place where it started.
In the upper part of the apparatus 7, liquid B, at a boiling point 10-20°C
lower than liquid A, is boiled by heat from stopper 5 which has passed to

it through sample S. Vapor of B passes to condenser 8 and is collected ‘

in graduated cylinder 9-10,




To minimize heat loss from the upper vessel containing liquid
B, a small boiler 2 of the same liquid B is operated in the liquid A,
the vapor of which heats a jacket around the B liquid at the top and is
condensed in condenser 6, and then returns to the bottom at boiler 2.

c. Preparation and measurement. Liquid pairs can easily be

found for the whole measuring range from 20-200°C, having suitable boil-
ing points differing by 10-20°C. In Table I, some pairs are summarized
with their boiling points and the corresponding measuring temperatures
Ty, i.e., the average temperature 1/2 (Ty + Tg). In this connection, it
must be remembered that ether and carbon disulphide are easily flammable
and combustible, It is important that the liquids be pure and have a
definite boiling point,

The heating power of the element has to be high enough so that
liquid A boils steadily in order to get a constant heat transfer to the
sample, To determine correct power inputs of the heating element for a
particular liquid pair, the times are taken which are necessary to test
a sample for different power inputs, In Figure 18, the measuring time,
t, of the liquid pair, carbon disulphide and ether, is plotted against

the electric power input, W, Curve II, in which the measuring time is

independent of the power input, indicates the correct heating power. In

curve I, the heat supply is too small, while in curve III, the boiling
point is elevated because of the excessively high vapor pressure which
consequently increases the temperature difference, thus decreasing the
measuring time. In Table II, some selected values of the heating power
are given for several liquid pairs,

The samples, used both for calibration and measurement, are
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TABLE 1

LIQUID PAIRS

78

. S . 3 © [+] [+
Liguid A Liquid B TA C TB C TM C
Methylene Chloride Freon 11 41.6 23.8 32,7
Carbon Disulphide Ether 46,3 34.6 40.5
Yater Trichloroethylene 100.0 87.0 93.5
Moncchlerobenzene Toluene 132.0 110.8 121.4
o-Dichlorobenzens Monobromobenzene 179.,0 155.6 167.3
TABLE II

SELECTED VALUES OF THE HEATING POWER

Liguid Pairs

Heating Power

Freon 11/Methylene Chloride

Ether/Carbon Disulphide

Trichloroethylene/Water

Toluene/Monochlorobenzene

Monobromobenzene/o~Dichlorobenzene

4.75

4,5

6.0

6.5

7.5
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Figure 18. Plot of the Electric Power Output W of Heating H Against the Measured

Time t for the Liquid Pair, Carbon Disulphide/Ether.
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cylindrical in form and can range in diameter from 16-18 mm and in length
from 1-30 mm, depending on the thermal conductivity of the material.
Samples of materials having a high thermal conductivity (pure metals)
can be made in the form of hollow cylinders with a wall thickness of
about 2 mm.

To minimize the contact resistance between sample and silver
plates, it is very important that the cylinder-end surfaces of the sample

be carefully ground flat and have as good a finish as can be obtained,

Idezlly, the surfaces of the sample should be near parallel,
The remarkably good accuracy of measurement is due to the fact
that the heat losses between the lower silver plate 13 and the upper
liguid B are kepit relatively low. This is achieved primarily by choosing
the dimension of the sample so as to ensure a reasonably large heat flow
through the sample., For instance, if the substance is a poor conductor

of heat, the sample taken should be in the form of a thin disk., For a

hetter conductor, a thicker sample or even a hollow cylinder should be

cr

Howsver, an excessively large heat flow will cause liquid B to

-
i
b
[aN
°

boil too violently and thus decrease the accuracy of the measurement,
The height and cross section of the cylindrical sample should therefore
be adapted to the estimated order of its thermal conductivity, The
measuring time should not be less than 80 seconds and not more than 1000
seconds, while for the most exacting measurements, the time should be
between 100 and 500 seconds (Figure 19),

A calibration curve has to be obtained for each liguid pair

used. Because the curve is a straight line, it is usually sufficient to

measure only two or three calibration samples. Figure 20 shows some of ‘
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Figure 19. Calibration Diagram for an Apparatus Using the Liquid Pair, Carbon

Disulphide/Ether as Boiling Liquids. The Known Thermal Resistance
R of Ten Calibrated Samples 1s Plotted Against the Measured Time t
Taken for 1 ml of Condensate to be Collected in Burette 14,
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20. Calibration Diagram for the Following Ligquid Pairs: a. Freon 11

(b.p. = 23.8°C) and Methylene Chloride (b.p. = 41.6°C). b. Tri-
chloroethylene (b.p. = 87°C) and Water (b.p. = 100°C). c¢. Tolu-
ene (b.p. ==110.8°C) and Monochlorobenzene (b.p. = 132°C). d.
Monobromobenzene (b.p. = 155,6°C) and o-Dichlorobenzene (b.p. =
179°C).
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the calibration curves for several liquid pairs. They have to be
measured anew for each apparatus. The diagrams of Figures 17 and 18
are used here only as examples.

It should be noted that for these relative measurements it
is not necessary to know the heat of vaporization or the exact values
of the boiling temperatures. This at once eliminates the errors that
can be introduced into a calculated value of Kz if the boiling points
of the liquids should differ slightly from the assumed values, owing
to impurities, or if the ends of the samples should not attain the
exact temperatures TA and TB’ owing to contact resistances. In order
to obtain reproducible results, care must be taken to ensure that these
resistances and also the magnitude of the small, residual heat losses
remain constant for all measurements, Because of the protective enve-
lopes, the residual heat losses are negligible in comparison with the
great amount of heat conducted through the sample. Using the contact
oil (graphite filled o0il) and carefully ground samples, the contact
resistances are reduced and kept constant to such an extent that their
effect in all measurements will normally remain below the limits of
accuracy determined by other factors.

2. Comparative Thermal Conductivity MeasuringﬁSystemSI’ 32, 33, 34, 35

a. Principle. The Comparative Thermal Conductivity Instrument,
Figure 21, is used for determining the thermal conductivity of solid
materials. In principle, the ability of the sample material to transport
heat is compared to the ability of a known reference material to transport
the same amount of heat,

The ability to transport heat through conduction is usually de-

termined by measuring the temperature difference between two points in a
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material when heat flows from one point in the direction of the other,
The temperature difference (A T) is related to the amount of heat flow
(Q) by Fourier's heat conduction equation:

AT = —AR"— (%) (85)

where A x is the distance between the two temperature measuring points,
A is the area of the cross section perpendicular to the direction of
heat flow, and K is the coefficient of thermal conductivity.

It is quite obvious from the above equation that when the
quantity Q/A is kept the same for two materials, one of known thermal
conductivity (K reference) and one of unknown thermal conductivity

(K sample), the respective temperature drops are related as follows:

K K
AT 2 = | AT
Ax sample A x reference

By measuring the temperature difference between two thermocouples a
distance Ax apart in both reference material and test sample, the

unknown thermal conductivity is

Kg = Kéz éx_
8 OAx | reference AT | sample (86)

The condition of equal heat flux (or heat flow density, Q/A) is obtained
by placing a test sample and reference material of equal cross section in
intimate contact with each other and then by holding the two between a

heater and a heat sink,
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In practice, a number of precautions must be taken, however,
to ensure a constant and uniform heat flux in the sample and reference
material, First, heat losses (or gains) along the sides will occur when-
ever the temperature of the surrounding insulation does not exactly match
those along the test stack, The fact that a temperature gradient exists
along the test stack from the heater to the heat sink poses a difficult
guarding problem. Second, even if the total amount of heat flow (Q) were
kept constant, it would still be possible to obtain a non-uniform heat
flux between the thermocouples, for example, if the disturbances caused
by an irregular interface contact have not subsided at the location of
the thermocouples,

To avoid these problems, it is necessary always to have the
surfaces of the sample and reference materials prepared to as good a sur-
face finish as can be attained under the circumstances, Radial heat
transfer is reduced by placing the test stack inside a cylindrical furnace
with a linear temperature gradient along the length of the tube. The end
temperatures match those at adjacent points in the stack. The space be-
tween the furnace tube and the stack is filled with insulating powder,

To obtain the best accuracy, the sample should be sandwiched
between two identical reference materials having a thermal conductivity
of the same order as that expected for the test material. The thermal

conductivity is now determined as follows:

! Ax AT AT
- = [ =X =2 = 87
Kg 2 AT ) sample (K Ax ) top ref- K Ax | bottom (87)

erence reference



Figure 22.

.0i2 ——U-— ez/
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NOTE: TOP AND BOTTOM SURFACES FLAT
AND PARALLEL TO o0.002"

Suggested Sample Geometry for Composite Specimens.
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COUPLE WIRE

Figure 23. Instrumentation for Pyrex and Pyroceram Reference Standards.
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The thermal conductivity of the reference materials is taken at the
average temperature of each., In general, there are four materials which
are used with the apparatus. These are, in the order of increasing
thermal conductivity, Pyrex 7740, Pyroceram 9606, Inconel 702, and Armco
iron. It is always desirable to have the temperature difference across
the sample comparable to that across the reference materials, and thus
the geometrical factor should be considered in relation to the choice

of standards. Whereas the temperature gradient through a given test
sample is determined by the output from the main heater only, the desired
temperature level of the sample is obtained by adjusting the power into
an auxiliary heater placed between the lower reference material and the
heat sink,

b. Operation and construction. After the reference materials

and the test specimen have been instrumented according to the instructions
given in Figures 22 and 23, the test stack can be built as shown in

Figure 24 or Figure 25, Thermocouples are connected to the terminal
strips on the base plate following the numbering scheme from Figure 24,
Attention must be paid to the fact that the correct height above the heat
sink 1s obtained before the lower reference standard is put in place,

This is to ensure that thermocouples No., 1 and 2 line up properly. There-
fore, an aluminum block is supplied to replace the auxiliary heater (J)
plus insulation (K) for tests at the very lowest temperatures. A similar
piece of aluminum is supplied to replace just the insulation (K) for

tests at moderately low temperatures. When the furnace is lowered, the
space surrounding the stack is filled with insulating powder, such as
bubbied alumina. Finally, the bell jar is placed over the test section

and the test can begin, For other details, see reference 36,
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¢. Test procedure,

(1) Build the test stack according to instructions
given in preceding paragraph 2a,

(2) Lower the guard furnace,

(3) Fasten the coolant connections in the back of
the furnace,

(4) Fill the space inside the furnace tube witﬁ
bubbled alumina or with some other suitable insulation,

(5) Place the bell jar over the test section.

(6) Check continuity of all thermocouples using the
potentiometer or a simple ohmmeter connected across the potentiometer
outlet on the front panel,

(7) Turn on coolant water to the instrument and verify

that an adequate flow passes through. (For tests using liquid nitrogen
as the coolant, regulate the flow by hand so that only a minute amount
of liquid nitrogen flows through the outlet tube. After a brief period
of time a steady state will have been reached and no further flow regulation
is necessary).
(8) Turn all four auto transformers to zero.
(9) Turn on the Main Power switch,
(10) Set the red pointer of the OTC (Oven Temperature

Control) at the desired maximum temperature and push the reset button,

(11) Put the Temperature Reference toggle switch in the
Temperature Reference position (this is up),.

(12) If it is desired to test in a vacuum, close the Back-

fill valve and switch on the mechanical vacuum pump. ‘



(13) If a vacuum gauge is supplied with the instrument,
turn on Vacuum switch, After a pressure of about 30 microns has been
reached, the test can begin,

(14) If it is desired to backfill the test section with

argon or nitrogen, open the Backfill valve first and then turn off the

vacuum pump.

(15) If an automatic ice reference system is supplied
with the instrument, turn on the Ice Reference switch,

(16) Apply a small amount of power to the main, auxiliary,
and the guard heaters. (The approximate settings of the auto transformers
for obtaining a given test temperature level will become familiar to the
operator after some experience has been gained with the instrﬁment.)

The reading (in millivolts) on the Temperature Reference meter allows a
rapid evaluation of the main heater input, while the indicated temperature
on the OTC may serve to provide a quick indication of the stack temperature
level which is dependent on the auxiliary heater power. (This, of course,
assumes that the OTC thermocouple has been placed in contact with, e.g.,
the main heater or test sample.) Power should be increased gradually at

a rate at which the heater temperatures do not increase by more than

about 300°F per hour. If one or two thermocouples are monitored on the
potentiometer and the results plotted, the final equilibrium temperature
may be roughly predicted and the power adjusted if it will be other than

that desired.

(17) Adjust the Lower Guard Heater to obtain TC 1 equal

to TC 2,
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(18) Adjust the Upper Guard Heater to obtain the
selected control thermocouple (see preceding paragraph 2b) reading equal
to TC 7.

(19) Wait for thermal equilibrium conditions to prevail
throughout the test section. A sufficiently steady state has been
reached when the temperatures do not change by more than about 1°F per
half hour.

(20) Record the temperatures along the test stack. Note
i: the Ice Reference light must be cycling on and off. Note 2: the
Temperature Reference switch must be set on TC Select before reading
TC 4 and TC 5 on the potentiometer.

(21} When the test is over, the vacuum may be broken by
first opening the Backfill valve and then turning off the vacuum pump.
If this order were reversed, the possibility exists that oil would be
sucked from the pump into the chamber.

d. Data reduction. In the preceding paragraph a, it was

shown that the thermal conductivity of the sample (Kg) is calculated

from

K =_1_<AX>
s 273"?5

where the subscripts

s = sample
tr =  top reference standard
br = bottom reference standard

This equation may be rewritten as follows: ‘




1 K ATt:r K ATb
K. = = Ax - * (5= —2r (88)
s Z S (Ax)tr a S <Ax>br ATs

The advantage is that the temperature differences may be sub-
stituted by millivolt differences obtained directly from the potenticmeter
readings. Generally, this method gives more accurate results, but it
should be kept in mind that the scheme is admissable only as long as the
total temperature drop through the stack is sufficiently small that the
emf versus temperature relationship of a chromel-alumel thermocouple may
be considered linear over this range. This is generally the case, and
the errors in converting from emf to °F exceed those resulting from a
possible, slight non-linearity.

Thus, we obtain:

. K Aenf ¢ Aemfb
tr T
K. == Ax —_— ] s < (89)
s 2 s <2§x >tr Aemf ( Ax>br Aemf >
where
ZXxs = distance between thermocouple junctions in the sample
in ft.
Zﬁxt = distance between thermocouple junctions in the top
* reference in ft,
ZXxb = distance between thermocouple junctions in the bottom
T reference in ft.
Ks = sample thermal conductivity in Btu/hr-ft degF evaluated

TC4 + TCS | o
at a mean temperature -——?;—-—- F
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K¢ = thermal conductivity of the top reference in
Btu/hr-ft degF evaluated at a mean temperature
(TC6+TC 7)0

— F

Kpp = thermal conductivity of the bottom reference
in Btu/hr-ft degF evaluated at a mean temperature

(TC2+TC3>°
——7——- F

Ki, and Ky, are obtained from the calibration curves supplied
with the apparatus,

AemfS = (TC S5 -TC 4) mv
Aemftr = (TC 7 - TC 6) mv
Aemfbr = (TC 3 - TC 2) mv

As a check on the accuracy of the test, one should verify that
the total energy through the top and through the bottom reference standard

is the same, or

K (AT - k(AT
CZ;>tr <Ax>br
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PART IV

DISCUSSION AND PRESENTATION OF RESULTS

A. Materials 37, 38, 39

The observed general characteristics of the composite specimens
are affected by many factors, the most important of which are:

a, Properties of the resin-hardener-additive (Ti) formulation,

b, Properties of the fibers.

¢, Quality of the resin to fiber bond.

d., Proportion of fiber to resin,

e. Orientation and distribution of fibers.
Some important aspects of performance expected from these composites are:

a, Resistance to surface attack by water, chemicals, and
solvents,

b. Long-term maintenance of mechanical and thermal properties.

c., Impermeability to liquids and gases.
Each of the aforementioned parts could be developed in an extensive research
program, A few important observations are presented to facilitate the
understanding of the experimental results. Appendix B comprises most of
the definitions of the chemical terms used in this discussion,

As mentioned in Part II, the hardener used with Epon 828 was
Versamid 140, This resin, made from polymerized vegetable o0il acids or
polyamid resins, is usually preferred since it has the lowest viscosity and
highest heat distortion temperature obtainable with any Versamid. It has

excellent adhesion to various substrates, outstanding impact resistance,
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chemical and solvent resistance, low shrinkage, and low exotherm. The
Versamid 140 also has free primary and secondary amine groups in the
polyamide, along with some carboxyl and a mixture of condensation products.
When mixed with epoxy resin, the amines, carboxyl, etc., are then avail-
able for curing,

Copper is one of the metals which reacts with amines, and the
danger of both general corrosion and stress corrosion, if components are
under stress, are present, The copper fibers used in this study were
made from an electrolytic, tough-pitch copper sheet, the purest grade of
copper commercially available. The minimum copper content of this material
is 99.95 per cent, and the method of manufacture is such that no residual
deoxidant is present (it contains only 0.,04% oxygen). Because of these
characteristics, the danger of corrosion of copper fibers, when mixed with
the epoxy resins, is reduced,

The aluminum fibers were made from a 99.99% commercially avail-
able aluminum sheet. These fibers are highly resistant to most atmospheres
and to a great deal ol chemical agents., This resistance is due to the inert
and protective character of the aluminum oxide film which forms on the
metal surface, The amines are generally corrosive to aluminum, but 99.99%
Al is, however, resistant to amines, unless they have a very high content
of ammonia and ammonium hydroxide,

The Titanium powder (97.1 Ti; 0.02 Si; 0,70 N; 0.05 Fe; 0.09 H;
0,30 Ca; 0,30 Al; 0,01 Mg; 7.6 microns is the average particle size, having
a 99,2 - 325 mesh) is intrinsically very reactive, so that whenever the
metal surface is exposed to air, or to any environment containing available

oxygen, a thin, tenacious surface film of oxide is formed; this oxide film
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confers upon Titanium excellent corrosion resistance in a wide range of
corrosive media, and it behaves very favorably in contact with other

metals.,
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B, Experimental Results

The experimental results, obtained from the '"Colora'" and
"Comparative Apparatus', for the factorial experiments are presented in
Tables III through V and conveniently plotted on a semi-log scale in
Figures 26 thru 29, The results of Yates' factorial experiment, consist-
ing of five factors at two levels, are presented in Tables VI and VII,
Recall that the factors are the length of the fibre, the cross section
of the fibre, the thermal conductivity of the fibre, the thermal con-
ductivity of the matrix, and the fibre volume ratio. The analysis shows
that the most meaningful factors to be considered for an optimum design
of the type of composite in question are, in order of importance, the
conductivity of the matrix, the fibre volume ratio, and the fibre cross
section,

In general, the results show that the aluminum fibers have a
greater effect on the composite thermal conductivity than the copper
fibers although the thermal conductivity of copper is almost twice that
of aluminum,

It would seem that there must be an added thermal resistance
introduced between the copper fibers and the matrix, At first, it seemed
that it could be due to a chemical reaction between the fibers and matrix,
to an oxide film on the fibers, to the possibility that the matrix ma-
terial does not adhere so well to copper as to aluminum, or a combination
of the three.

A chemical reaction, after reviewing the properties of the ma-
terials involved, could have been possible., It is also reasonable to

conclude that, if there was a reaction, the properties of the composite '
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Figure 26, Experimental Values of Thermal Conductivity vs, Fiber Volume
Ratio (Al-Ep). Curve 1 (Equations 2 and 22); Curve 7
(Equation 3).
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(Equation 3),
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TABLE VI

RESULTS FROM YATES' FACTORIAL EXPERIMENT ("'COLORA™)

TREATMENTY RESPONSE ORDERED ESTIMATED

cOMBINATION (KB) EFFECTS MAIN EFFECT
1 0+263000E 01 0:994600E 02 0.621625F 01
A 0+161000E O} 0+332000E 01 0+2450008 0C
B 0+104000E O} -0,268600E 02 -0.167875€ 01
AB 0.218000E 01 0+.248000E 01 0.155000E 00
C 0+146000E 01 0.292000E 01 0.1825008 00
AC 0+.167000E O} 0e«179400E 02 0.112125€ O}
8C 00950000 00 ~0.600000E 00 -04375000E=0}
ABC 0+191000E Of =-0«193400E 02 -0¢120875E Ol
D 0+.453000€ O} 0«335200E 02 0+2095008 Ot
AaD 0.298000E O1i -0.402000E 0O} -0.251250E 00
80 0«179000FE O} -0,180Q400E 02 -04112750€ C1
ABD 00229000 01 =0,244000E Ot -0,1537508 00
CcD 04299000F O} -0+ 174000E 01 -0,108750€8 0O
ACD 0+282000E 0} 0.880000E 01 0.550000E 00
BCD 0.292000F O} =0+.660000E 00 -0.412500E=01
ABCD 0+241000E 01 -0.116400E 02 -0 727500F 00
E 0¢262000E O} 0.271000E 02 001693758 01
AE 0.191000E 01 0.480000E 0Ot 0.300000E 0O
BE 0152000 01 =~0+164600E 02 ~0,1028758 01
ABE 0.181000E 0O} ~0.676000E 01 «~0+422500F 0O
CE 0.226000F 0} 0.676000E 01 0.422500E 00
ACE 0.453000E 01 0«151000E 02 0.943750F 00
BCE 04202000 0} -0,800000E 01 -0.500000E 00
ABCE 0.285000€ 01 -0+117400E 02 ~0e733750F 0O
DE 0+100300E 02 0.149600E 02 0.9350008 QO
ADE 0+437000E O1 0,202000E 01 01262508 QO
sDE 0+346000E O} -0,128000E 02 ~0.800000E 00
ABDE 04348000F 01 -0,600000E-01 ~0+375000E~02
coE 0.468000F 01 -0.378000E O} =0.236250F CO
ACDE 0.120300E 02 0.101600E 02 06350008 00
8COFE 0+285000€E 0} ~0.506000E 0} -04316250F QO
ABCDE 0.2820008 0% -0.968000E 01 -=0+605000F 00

SAMPLE ESTIMATE

OF VARIANCE # 272713200 wH  19,80450

0«994600E 02
~0+268600E 02
0¢335200E Q2 .
0«271000E 02

Mmoo e
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(""COMPARATIVE")

TREATMENT

COMBINATION

ACE
6CE
ABCE
e
AUE
6Ok
ABDE
CuE
ACDE
sCOE
ApCDE

RESPONSE
(KB)

0.266000E
0.164000E
0e136000F
00262000E
0«.141000E
06213000E
0.110Q00E
3+210000E
Qe266000F
0+259000EF
0+.200000F
0.258000E
0.261000E
0.220000F
0e346000E
0.123000E
0¢239000E
0«233000FE
0. 176000
0.160000E
0.461000F
J+356000F
0.232000E
0.184000E
0«613000E
0+760000E
0.518000F
0.294000F
04¢326000E
0+117200E
0+280000F
Q+314000E

01
01
01
01
01
01
01
01

01
01

01
01
01
01

01
01
01
01
01

01
01
01
01
01
01
02
01
01

ORDERED
EFFECTS

0+975300E
0.611000E
~0.214700E
=0.997000E
0.145000E
0+659000E
=04555000¢€
-0.821000E
C.266700E
0+¢569000E
=0.941000E
=04160300E
~0.397000E
0.625000E
=0.210000E
=0.555000E
0+.288300E
0.645000E
-0.185700E
-04127500E
0+.519000E
0.993000E
-0.661000E
0.7300Q0E
0.180500E
0«138700E
=0.915000&
=0.857000E
=0+639000E
0.155100E
-0.135000€
~0.461000E

SAMPLE ESTIMATE
OF VARIANCE #

0+975300¢E
-0es214700KE
D+266700E
0.288300E

Qe
Qd
0<
02

264390160

02
01
02
01
01
01
01
01
02
01
01
02
01
01
00
01
02
01
02
02
01
01
01
0o
02
02
01
01
01
02
01
01

wH

ESTIMATED
MAIN EFFECT

0.609562F 01
0.381875E 00
-0.134187€ 01
-0.623125€ 00
0.506250E=-04
0.411875€ Q0
=0e346875F 00
-0+513125€E 0C
NDe.l66687E 01
0+3556¢5E 00
-0+588125E 0O
-0.100187¢ 01
-0.248125€ 00
0¢390625E 00
-0.131250€£=01
-0.346875F 00
0.180187g 01
0.403125€8 00
-0.116062E 01
~0.796875E 00
0e324375F 00
0.620625€ 00
-0.413125E Q0
0.456250£-01
0.1128128 Ol
0.866875E -00
-0.571875€ 00
-0.535625€ 00
=0e¢399375€ 00
0e969375E 00
-0+843750£-01
-0.288125€ 00

15.,49995
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would not have changed enough to produce such high differences in thermal
conductivities as in the case of sample ACE (Epoxy-Al fibers) which has

a thermal conductivity almost two and a half times higher than its corre-
sponding sample AE (Epoxy-Cu fibers).

The aluminum and copper fibers usually have a thin layer of
oxide on their surfaces. landbook values of thermal conductivities of
copper oxide and aluminum oxide are 1,18 and 0,68 W m=! deg~l respectively.
These values, when compared with the matrices conductivities of epoxy
and epoxy-titanium (i.e., 0.238 and 0,365 W m-1 deg'1 respectively), are
higher; hence the possibility of an additive resistance could be disregarded,

The bonding properties of the epoxy resin, as mentioned in Part
II, are excellent, Some air bubbles could have been trapped during the
specimen fabrication; however, it is believed, after inspecting the speci-
mens, that their effect on the composite thermal conductivity is negligible;
i.e., very few éir holes are visible for low volume ratios and none for
high volume ratios.

The aluminum and copper filled specimens were made by the same
method; hence, it was expected, at first, that the two sets of specimens
had the same or similar fiber distribution. For the 20% fiber volume
ratios, most of the fibers, when poured in the mold (Figure 13), filled
the predetermined volume, Vr, evenly, and there was no need to press them.
For the 40% fiber volume ratios, and higher, the fibers had to be pressed
down in order to fill Vp. N.B. If two specimens have identical matrices,

jdentical volume ratios, identical fiber geometry, but cne has aluminum

fibers and the other copper fibers, one would expect the copper filled




specimens to have higher thermal conductivity than the aluminum speci-
mens, since the thermal conductivity of copper is about 80% higher than
aluminum,

In the 20% fiber volume ratios, the aforementioned statement
seems to apply. Tables IV and V, Figures 26 through 29, present the
experimental thermal conductivities and, in all cases, the 20% fiber
volume ratios show an increase in Kp from the aluminum specimens to the
copper ones, in the epoxy matrix as well as the epoxy=-titanium powder

matrix, Note, for example, the samples:

C - Kg = 1.46, Al fibers (0.005 X 0,005 X 0,062), V, = 20,8%, Ep matrix
CD -» Kp = 2.99, AL fibers (0.005 X 0.005 X 0.062), V, = 24%, Ep-Ti matrix
1 -» Ky = 2,63, Cu fibers (0.005 X 0,005 X 0.062), V, = 22.4%, Ep matrix
D = Ky = 4.53, Cu fibers (0,005 X 0,005 X 0.062), Vp = 22.8%, Ep-Ti matrix

The increase in KB from C to 1 = 80%

The increase in KB from CD to D = 51.,5%
The increase in K, from C to CD = 105%

B

The increase in KB from 1 to D = 74,5%
From the results, it is reasonable to assume that the 20% fiber volume ratio
specimens, having the same fiber geometry, could have similar distributions.
In the 40% fiber volume ratios, half of the results show the
aluminum filled specimens to be more conductive than the copper ones. This
strange behavior could be explained if the manufacturing process and the
mechanical properties of the fibers are considered. For this volume ratio,
as previously indicated, the fibers had to be pressed. The copper fibers
are stiffer than the aluminum ones; hence, when pressed, they tend to dis-

tribute themselves perpendicular to the applied pressure,
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This behavior was examined in detail by fabricating a large
specimen, 2-1/2 inches in diameter and three inches long (Figure 30).
From this, four specimens were machined: two, 3/4 of an inch in diameter
and 3/4 of an inch long, to be tested in the "Comparative Apparatus",
and two, 3/4 of an inch in diameter and 1/4 of an inch long, to be
tested in the 'Colora'. Note that the specimens were machined in the
direction perpendicular to the Y axis., The four specimens have a
fiber volume ratio of 40% and copper fibers (0.015 X 0,015 X 0.125) in
an epoxXy matrix, As was expected, their experimental results, shown in
Table VIII, were much higher than their corresponding ABE samples iﬁ
Tables IV and V. This clearly indicates that specimens having copper
fibers can be fabricated with anisotropic characteristics by just press-
ing the fibers. Several private companies, universities, and governmental
agencies, such as Wright-Patterson Air Force Base under the guidance of
Dr. S, W, Tsai, and the University of Washington in St. Louis under the
direction of Dr, Tolbert, are in the process of developing sophisticated
methods (for instance, using a magnetic field) to align short fibers or
whiskers; they feel that a successful but expensive process can be de-
veloped, What would happen when the fibers or whiskers are non-magnetic?
It is believed that the simple process found in this study could be very
useful in some applications, In reviewing the literature on composite
materials, no one mentions this finding. The behavior of realigning
copper fibers under pressure can be seen if the specimens used in this
study are closely examined, It is also noted that the realignment is

more predominant in the .Z/a ratios of 4, 8, and 25. In the epoxy matrix,

the copper sample with the .¢/a of 12,4, when compared with the corresponding

112



113

INITIAL SPECIMEN
OUTLINE

/4

Figure 30, Anisotropic Specimens,




TABLE VIII

EXPERIMENTAL RESULTS OF THE ANISOTROPIC SPECIMENS

Fiber Vol,
Density Ratio K T
Sample (gm cm-3) (%) (W m=1 deg=1) oY)
ABE 1 4,16 41 10.5 60,9
ABE 3 4,20 42 15,2 59,1
ABE 2 4.16 39,1 10.23 40,5
ABE 4 4,27 40.5 9,74 40,5
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aluminum one, has a thermal conductivity 16% higher with the epoxy matrix
and 115% higher with the epoxy-Ti matrix; it could be possible, then, to
conclude that the .4/a of 12,4 gives a better or favorable fiber distribu-
tion than the other ratios.

The aluminum fibers, when pressed, showed some alignment of the
fibers perpendicular to the applied pressure for the 4/a of 4 in the
epoxy matrix and for the AZ/a of 8 in the epoxy-Ti matrix. (This alignment
is not as pronounced as the one for the copper fibers.) For the other
ratios, the aluminum fibers would bend and not relocate themselves as the
copper ones. Note that the best fiber geometry for the aluminum fibers
is the one with an .Z/a ratio of 25 as shown in Figure 27,

The discussion of the experimental results has been based on
just two similar samples (the 1/4" and the 3/4"), In order to draw
acceptable conclusions, another experiment was performed. Six 3/4 of an
inch long and ten 1/4 of an inch long samples were chosen at random from
a group of twenty, and a statistical analysis was carried out to test the
repeatability or replication of results, The experimental data for this
experiment are shown in Tables IX and X,

Wwith the aid of Appendix B, it is found that the mean and
standard deviation of the conductivities, for the 3/4 of an inch samples,
were 6.265 W m~1 deg'1 and 0,254, and for the 1/4 of an inch sample, X
- 4.27 W m'ldeg"1 and 0= 0.534, This clearly indicates that from the
degree of consistency of the readings and reproducibility of the results,
they are felt to be truly representative of the particular samples tested.

Table XI shows thermal conductivity measurements on four aluminum
specimens having 100% fibers and four fiber geometries, and four copper

specimens having 100% fibers and four fiber geometries.
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TABLE IX

EXPERIMENTAL RESULTS OF "A,;, Cy, D;, E" SAMPLES (1/4'" THICK, MEASURED

AT 40,5°C)
Fiber Vol,
igecimen (Densifg Ratig -1K ]
. gm cm™>) (%) (Wm~* deg=t)
1 2.00 39.0 3.84
2 1,98 37.5 4,0
3 1,98 37.5 4,67
4 2.01 35,0 4,16
5 1.96 35,9 4,79
6 1.98 37.5 . 4,22
7 1.99 38.2 4,51
8 2.03 41.4 5.12
9 1.99 38.2 3,24

10 2.03 41,4 4,16




TABLE X

EXPERIMENTAL RESULTS OF "A,, C;, Dy, E'" SAMPLES (3/4' THICK)

Fiber Vol,

Specimen Density Ratio K T

Ne. (gn cm-3) %) W m~) deg™h) °C)
1 2.08 35,6 7.02 60.8
2 2.07 35.4 5.69 61.0
3 2.03 34,0 5.87 60,6
4 2.05 34.8 5.81 62.1
5 2,04 34,4 6.78 59.8
5 2.06 35.3 6.4 60.3
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These specimens were made per equation (82), i.e., W, =(} VoeVps where

Vg is equal to 1. After the fibers were poured into the mold, a pressure
of 29.4 tons was required to obtain the predetermined final dimensions.
The densities of the specimens were found to be very close to the one of
the pure metal (i.e., 2.78 gm cm=3 for aluminum and 8,92 gm cm™3 for
copper); this indicates that the 100% fiber volume ratio was obtained.

At this point, a very important observation is made in regard to the
thermal conductivity measurements: the highest experimental KB for the
aluminum and copper specimens are 17.3 and 13.8 W m-l degz"1 respectively;
the discrepancy is large when these values are compared with the con-
ductivities of an isotropic and homogeneous aluminum specimen (KB = 210

W om-1 deg'l), or copper specimen (K; = 368 W m~1 deg=!) as obtained from
standard materials handbooks or by the earlier theories depicted in
Figures 31 through 34. This experiment clearly shows the differences in
conductivities between the pure metals and specimens made per equation
(82), i.e., wf = (} VT VR' In the study of such specimens, other factors
should be considered, for example: contact resistance between fibers,
oxide films, and other physical parameters. The purpose of this experi-
ment was to clarify the 100% fiber volume ratios of the earlier theories

and possibly open other areas of research.
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C, Theoretical Results

Theoretical curves obtained by other authors are shown in
Figures 31 through 34. These curves represent the composite thermal
conductivity versus the fiber volume ratioc., Equations 9, 10, and 11,
were not plotted since they are empirical equations and do not check
with the results obtained in this study. Equations 16 and 17 do not
give meaningful results; for instance, with the Kf and K, used in this
study, a zero-division is experienced whenever volume ratios from zero
to 100% are substituted. In obtaining the curves in Figures 31 thru
34, it seems that it was mathematically convenient for the authors to
assume high symmetry in representing a composite structure; for instance,
filamentary composites were represented by square lattices, rectangular
lattices, lamellar lattices, tetragonal lattices, cubic lattices, and
close packed structures were represented by hexagonal lattices, face
centered cubic etc. FEquations obtained by such assumptions have rigor-
ous values of composite thermal conductivity depending, in general, on
the fiber volume ratio {(Vp.J), the thermal conductivities of the phases
(X, K¢), and/or some parameter "F' determined by the mode of packing,
or on some empirical parameter '"n', Figures 26 through 29 definitely
show that the factors involved in describing a composite structure are
not only VRl’ Ke and K, but also the fiber geometry and its distribution,

Curves 1 (Equations 2 and 22) and 7 (Equation 3) are plotted to
show the upper and lowexr bounds for the thermal conductivity of composites
as obtained by earlier theories, The stochastic thermal model developed
in this study includes the fiber geometry and its distribution. The

discussion of this model can be found in Part II, Part IV, and Appendix A, .
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Figure 31. Thermal Conductivity vs, Fiber Volume Ratio (Al-Ep). 1., Maximum
Conductivity (Equations 2 and 22), 2. (Equation 12), 3.
(Equation 6). 4. Random Mixture (Equation 14). 5. (Equations
5 and 21), 6. (Equation 7)., 7. Minimum Conductivity (Equation 3),
8, (Equation 16). 9, (Equation 18). 10, (Equation 19).
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Theoretical results obtained from this model are limited by
the size of the computer, as it will be explained in section D of Part TV.
The curves for the £ ratios of 4, §, 12.4 and 25 plotted in

a
Figures 26 through 29, have been obtained from the stochastic model.

Note the curve §§= 8: this curve is madé of two parts, the section from
0 to 12,8% fiber volume ratio was obtained from the computer program in
Appendix A and Figure 8, while from 20 to 55% was obtained from the theory
of Appendix D and the thermal modei of Figure 8. The reason for choosing
the é?: 8 is the following one: from the fiber volume ratio equation, i.e.,
VR =1 Vf/VT' it is noted that the number of fibers (N) needed to fill a
specific volume (Vp) is W\ = (Vp/Vg) Vg, hence for a constant Vp, N will
increase as V¢ will decrease, The Vp/Ve used in this study are listed in
the second column of Tables XIV through XVII, Note also that the least
amount of fibers needed to fill a predetermined volume Vp with a prescribed
fiber volume ratio (VR) is the fiber with the 493 = 8, followed by the Z)g =
4, 25, and 12,4 respectively,

The Mark II, G.E. computer memory bank, allowed only 500 fibers,
or a Vp of 12.8% (see section D of Part IV) no matter what the fiber geometry,
hence if the :@of 4 were chosen, 500 fibers would have given a fiber volume

a
ratio of 6.4%; the dgof'zs,a Vg of 1.42%;’énd the :?of 12,4,2 V, of 0,71%,
a :

a
The thermal conductivities for the aforementioned fiber volume ratios and
geometries could have been calculated by the computer, but the answers would
have been very close or probably the same as the matrix: for this reason
the g?of 8 was chosen,

Work is continuing in refining the computer program and rewriting

the program for a larger computer such as the IBM 360, Because of the




computer limitations, another theory was investigated, See Appendix D,
Tne results from this theory are plotted in Figures 26 through 29, The
thermal conductivities obtained from this theory follow the experimental
pehevior of the specimens, i.e., KB is a function of the fiber volume
retio and fiber geometry. The question arises: Is this theory good

for all fiber volume ratios? By looking at the trend of the experimental
data we can certainly make some qualitative conclusions; for example,
Figurss 26 through 29 show that for the 4gof 8 this theory is good bhetween

a

20% to 40% or perhaps higher; for the g?ratios of 4, 12,4, and 25 the
a

ould be useful for fiber volume ratios higher than 40%, The

ot
-
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Q
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3
e
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o

v program of Appendix A is believed to be correct; the limited
da%a obtained from it seems to be directed toward the experimental values,

only a larger computer could ascertain its validity,
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. D, Computer Program

The computer program is written for the Mark II G.E. time
sharing system, The program is sufficiently versatile so that it can
be run by anyone. To gain access to the computer, one depresses the
ORIG button on the teletypewriter console and dials the telephone
number of the central computer, The computer then responds with a
series of statements., The underlined portions are user supplied while
the remainder are computer responses.

USER NUMBER =~ -« -« -« SBT43111, TIMRDE

PROJECT ID - =« - = FIBERS

SYSTEM = =« = = = - FOR
NEW OR OLD = = =« « - OLD
OLD FILE NAME - - - COMP 1
READY
RUN
COMP 1 09.38 03/28/69

FORT-C~-F DATED 10 MAR 1969

SAMPLE SIZE INCREMENT? 10

(The number 10 is typed here to generate 10 fibers into the specified model
volume),

FOR SAMPLE SIZE = 10 DISCARDED FIBERS 0

(This statement tells the user that no fibers intersected any other fiber

when introduced in the matrix. NOTE: The fibers intersecting the model's
surface are rejected, but are not counted in "DISCARDED FIBERS",)

MORE FIBERS? g

. (The user types 0 or 1 if his answer is ''yes" or ''no" respectively,)




SAMPLE SIZE INCREMENT? 20

FOR SAMPLE SIZE = 20 DISCARDED FIBERS 2

(Here 2 new fibers intersected with one of the previous fibers; there-
fore they were discarded and two new ones were generated in their place.)
MORE FIBERS? 1

FIBER DENSITY CHECK? 0

(Again, the user types 0 or 1 for yes or no., If the answer is yes, the
user will now perform the heat conduction problem, At first the model
is subdivided in a number of heat channels, hence:

VALUES FOR DY AND DX? 015, ,015

(llere the user states the size of the integrating unit or heat channel
area that is desired to be used, 1In this case, an area of .000225 is
used to estimate the fiber density, since the fiber used in the analysis
has a cross section of 0,015 X 0.015 square inches,)

FIBER HITS = 1,0300E + 02

MATRIX HITS = 1.8730FE + 03

SUMKB = 2,9037E - 01
SUMKM = 4,4578E + 00
AVERAGE KB = 2,4029E - 03

(FIBER HITS represent the number of heat channels where fibrous material
was located, MATRIX HITS represent the number of heat channels where
fibrous material was not located., SUMKB represents the sum of the thermal
conductivities of the FIBER HITS, SUMKM represents the sum of the thermal
conductivities of the MATRIX HITS., Note that (MATRIX HITS) times (Km)
should be equal to SUMKM, in this case Km = 0.00238 W ca~! deg'l. AVERAGE

Kg 1s the total thermal conductivity of the matrix with the specified
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number of fibers or the specified fiber volume ratio,)

FIBER DENSITY CHECK? 1

(If the answer were 0, the computer would again respond with a request
for: 'VALUES FOR DY AND DX?", thus enabling the user to change the in-
tegrating interval if desired,)

MORE FIBERS? STOP

(The program is terminated with this response. If more fibers were
desired and the proner response typed, the user could go through the
aforementioned cycle again, NOTE: The program could be terminated at
any response by tyvping STOP or tyvping ANY NUMBER GREATER THAN ONE AT
"MORE FIBERS?").

This computer program was unable to generate more than 500
fibers since the program required a considerable amount of computer
memory, and the Mark II G.E, Time sharing system was unable to furnish
the proper amount,

Tables XII and XIII present computer results for the average
thermal conductivity of a model having a geometry similar to the "ABC"
specimen used in the "COLORA" instruments, These results were plotted
in Figure 26 for comparison with the experimental ones. Some of the
disadvantages of this program are the limitation on the fiber volume
ratio and the cost of the computer time; for instance, the running time
for Table XIII was 1664 units, the terminal time was 146 units., One
unit costs 30 cents; hence 1810 units cost $543.00! (Note that one

unit is equivalent to 4/3 of a second), or Table XII cost $2172.,00.
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TABLE XII

COMPUTER RESULTS FOR FIBER: 0,015" x 0,015" x 0,125"

Ky (W ™! deg!)

No, of VB .
Fibers (%) Al-Ep Al-Ep-Ti Cu-Ep Cu-Ep-Ti
0 0 0.238 0.365 0.238 0,365
20 0.51 0,240 0.367 0.240 0.367
100 2.56 0.252 0.370 0.252 0.370
200 5.12 0.376 0.441 0.456 0.520
300 7.68 0.503 0.549 0.663 0.709
350 8.98 0.517 0,557 0.677 | 0.714
500 12,80 0,923 0.945 1,334 1.356




TABLE XIII

EXAMPLE OF COMPUTER PROGRAM QUTPUT

CoMP1 15:17 04/11/69
FORT-C-F  DATED 10 MAR 69

SAMPLE SIZE INCREMENT?100

FOR SAMPLE SIZE =
MORE FIBERS?1

100 DISCARDED FIBERS

FIBER DENSITY CHECK?0
FIBER CONDUCTIVITY CONSTANT?2.1
VALUES FOR DY AND DX?7.015,.015

FIBER HITS = 5,7700E+02

MATRIX HITS = 1,3990E+03

SUMKB = 1,6649E+00 SUMKM = 3,3296E+00
AVERAGE KB = 2,5276E-03

FIBER DENSITY CHECK?1

MORE FIBERS?0
SAMPLE SIZE INCREMENT?400
500 DISCARDED FIBERS

FOR SAMPLE SIZE =
MORE FIBERS?1

FIBER DENSITY CHECK?0
FIBER CONDUCTIVITY CONSTANT?2.1

VALUES FOR DY AND DX?,015,.015

FIBER HITS = 1,6250E+03

MATRIX HITS = 3,5100E+02

SUMKB = 1.7414E+01 SUMKM = 8,3538E-01
AVERAGE KB = 9,2354E-03

FIBER DENSITY CHECK?0

FIBER CONDUCTIVITY CONSTANT?3.68

VALUES FOR DY AND DX?.015,.015

FIBER HITS = 1,6250E+03

MATRIX HITS = 3,5100E+02

SUMKB = 2,5522E+01 SUMKM = 8,3538E-01
AVERAGE KB = 1,3339E-02

FIBER DENSITY CHECK?1

MORE FIBERS?710

PROGRAM STOP AT 1520
USED 1373.28 UNITS

14

843
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E, Distribution of Fibers in a 3-Dimensional Space

The Mark II G.E, computer was unable to furnish the proper

bank for fiber volume ratio higher than 12.8. In

computer m

equivalent to a mean amount of matrix material between a fiber and its

nearest neighbor in a collection of fibers randomly distributed in a 3-
dimensional space. It is noted that in the expression for O , the fiber

velune ratio end the fiber geometry play a very important role in the

later determination of the composite thermal conductivity. Results

Tables XIV through XVII show theoretical results obtained from this theory
for volume ratios of 20, 30, 40, 50 and 60% for the different geometries
and materials used in this study. NOTE: This model does not work for

lume ratics of O and 100% (see the expression for é; in Appendix D),
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e

¢liable theoretical models could be developed to predict

o

s
4
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the thermal conductivity of the type of composites used in this study.
The experimental work indicates the general behavior of the thermal con-
ductivity of composites as a function of Key, Ky, Vp, the fiber geometry,

and it

4]

distribution; this data should be very helpful in developing

better and more reliable models. Because of the many variahles encountered,
it seems almest impossible to approach this problem from a deterministic
peint of view, In this studv an attempt was made to develop a statistical

cr stochastic model, the theoretical and experimental results seem to indi-
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ity of the statistical and probabilistic approach,




TABLE XIV

THERMAL CONDUCTIVITY OF FIBERS RANDOMLY DISTRIBUTED IN A 3-D SPACE
FIBER: 0,005" X 0,005" X 0,062"

Fiber Vol. YR ) *Kg (W ™! deg™1)

Ratio Vf T

(%) (cm=3) Al-Ep Al-Ep-Ti Cu-Ep Cu-Ep-Ti
20 7874 0.043 5.29 8,02 5.35 8.15
30 11811 0.038 6.04 9.13 6.11 9.30
40 15748 0.034 6.63 10,00 6.72 10,21
50 19685 0,032 7.12 10,74 7.23 10.97
60 23622 0.030 7.55 11,37 7.67 11.64

*Kp = Thermal Conductivity

TABLE XV

THERMAL CONDUCTIVITY OF FIBERS RANDOMLY DISTRIBUTED IN A 3-D SPACE
FIBER: 0,005" X 0,005" X 0,125"

Fiber Vol,. R S *Kg (W m~1 deg-1)
Ratio Vf T
(%) (cm=3) Al-Ep  Al-Ep-Ti  Cu-Ep  Cu-Ep-Ti
20 3906 0.055 4,21 6.40 4,25 6.48
30 5859 0,048 4,81 7.2 4,86 7.40
40 7812 0.044 5.28 8.00 5.34 8.13
50 9765 0.041 5.68 §.59 5.74 8.74
60 11719 0.038 6.03 9.11 6.10 9,27

*Kg = Thermal Conductivity
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TABLE XVI

THERMAL CONDUCTIVITY OF FIBERS RANDOMLY DISTRIBUTED IN A 3-D SPACE
FIBER: 0,015" X 0.,015" X 0,062"

Fiber Vol, Vi 8 *KB (W mml deg*l)

Ratio 173 e

(%) (cm=2) L Al-Ep  Al-Fp-Ti  Cu-Ep  Cu-Ep-Ti
20 874,5  0.092 2.58 3.93 2,59 3,96
30 1311.8  0.079 2,95 4,49 2,96 4,53
40 1749,0 0,072 3,24 4,95 3,26 4,98
50 2186.3  0.067 5,49 5.30 3,51 5.36
60 2623.5  0.063 3,70 5.63 3,73 5.69

Ny = Thermal Conductivity
D

TABLE XVII

THERMAL CONDUCTIVITY OF FIBERS RANDOMLY DISTRIBUTED IN A 3-D SPACE
FIBER: 0.015" X 0.015" X 0,125"

Fiber Vol. VR *Kp (W w1 deg™hy

AN
Ratio VF Kl
(%) (cm=3) L Al-Ep  Al-Ep=Ti  Cu-Ep  Cu~Ep-Ti
20 434.8  0.115 2,05 3.13 2,06 3.15
30 652.2  0.100 2.34 3,57 2,35 3,60
40 869.6 0,091 2,57 3.93 2,59 3,95
50 1087.0 0,085 2.77 4,22 2,78 4,26
60 1304.3 0,080 2.94 4,48 2,96 4,52

*Kp = Thermal Conductivity




PART V

SUMMARY OF RESULTS AND CONCLUSIONS

1, The svecial technique used in the fabrication of the
models is very effective for fiber volume ratios of 20 to 50 percent,
Because of the vacuum technique, very few pits or holes are present in
the specimens having 20% ratios or lower, and practically none for
higher ratios., Individual materials can be prepared with reproducible
properties,

2. The testing procedure used in this study, i.e., the 'Colora"
and the "Comparative Apparatus", is suitable for evaluation of the thermal
conductivity of the type of composites used in this study and would seem
tc indicate that accuracies of better than + 3% for the "Colora' and + 2%
for the '"Comparative Apparatus' can be obtained.

3. Effective thermal conductivities were measured for two
factorial experiments comprising thirty two specimens each., With the
aluminum fibers embedded in an epoxy matrix, the conductivities ranged
from 0,95 to 4,61 W m-1 deg-1, with the copper fibers and epoxy matrix,
the conductivities ranged from 1.04 to 2,66 W m-1 deg‘l. with the aluminum
fibers and the epoxy-titanium powder matrix, the conductivities ranged from
1.23 to 12.05 W m~! deg‘l. With the copper fibers and the epoxy-titanium
powder matrix, the conductivities ranged from 1,79 to 10.05 W n~1 deg~1,

4, Two statistical analyses; one for the 1/4" specimens, compris-
ing ten samples, and the other, for the 3/4" sample, comprising six samples,

were performed. The fiber volume ratios for the 1/4'" samples' (having the
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epoxy-titanium powder matrix and aluminum fibers) ranped from 37.5 to

41.4 percent, and their measured thermal conductivities ranged from 3,24

to 4,79 W m-1 deg'l. The fiber volume ratio for the 3/4" samples' (having
epoxy-titanium powder matrix and aluminum fibers) ranged from 34 to 35.6
percent, and their measured thermal conductivities ranged from 5,81 to
7.02 W m-1 deg’l. For the 3/4'" specimens, the mean thermal conductivity
is 6.25 W m-1 deg'l, and the standard deviation G is 0.595., For the 1/4"
specimens, the mean thermal conductivity is 4,27 W m=1 deg'l, and the
standard deviation U is 0.534,

5. Effective thermal conductivities were measured for four
specimens (two 1/4'" and two 3/4") having anisotropic characteristics.
The specimens were made of copper fibers embedded in an epoxy-matrix. The
fiber volume ratios of the four specimens ranged from 39.1 to 42 percent,
and their measured thermal cenductivities ranged from 9,74 to 15.2 W m-1 deg'l.

6. Effective thermal conductivities were measured for four alumi-
num specimens having the same fiber volume ratios (100%) and four fiber
geometries; and four copper specimens having the same fiber volume ratios
(100%), and four fiber geometries. Their densities ranged from 2.63 to 2,66
om cm=3 for the aluminum, and from 8.44 to 8.50 gm em™? for copper. Their
measured conductivities ranged from 8.2 toc 17.3 W m~1 deg=l for aluminum
specimens and from 10.9 to 13.8 W m-1 de;z'1 for the copper specimens.

7. The most meaningful factor to be considered for an optimum
design of the type of composites used in this study are, in the order of
importance, the conductivity of the matrix, the fiber volume ratio, and the

fiber cross section as obtained from the factorial experiment.




8. Anisotropic characteristics for a copper fiber composite
can be achieved for fiber volume ratios of 40% or higher by just press-
ing the fibers into a predetermined volume,

9, The thermal conductivity of composite materials, made of
highly conductive fibers randomly distributed in low conductive matrices,
is not only a function of the fiber volume ratio, the conductivity of
the fiber, the conductivity of the matrix as covered by earlier theories,
but also a function of the fiber geometry and its distribution, Earlier
theoretical efforts consisted of mathematical models which are higﬁly
idealized (Maxwell, Rayleigh, Bruggman, etc,); most of these models
either underestimate or overestimate the thermal conductivities of the
type of composites presented in this study. |

10. Theoretical equations for the thermal conductivity of a
matrix filled with fibers, ellipsoidal or cylindrical in shape and random-
ly distributed according to a prescribed filber volume ratio, have been
derived. With these equations, a stochastic model has been proposed
which allows one to simulate realistically composite structures. Limited
theoretical predictions of the stochastic model seem to check with the
experimental data, and it shows that additional factors are involved in
describing composites which are not covered by earlier theories, i.e.,
fiber geometry and its distribution. Theoretical results of composite
thermal conductivity, up to a fiber volume ratio of 13 percent, are
obtained with the aid of a high speed computer. Higher fiber volume

ratios can be obtained if a computer with larger memory bank is supplied.

11. Theoretical predictions of the composite thermal conductivity

of fiber volume ratios of 20 to 60 percent are obtained by distributing
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fibers in a 3-dimensional space in accordance with a Poisson process,
This theory was investigated because of the computer limitations of preced-

ing paragraph 10, Experimental results for the fiber geometry of £ = 8
a
seem to check very well with this theory; for £ of 4, 12.4 and 25, this
a

theory could be used for fiber volume ratios higher than 40%,

12, It was found that a specific specimen formulation
(sample ACED) gives a thermal conductivity similar to that of stainless
steels but a density only a quarter of that of the steels.

13. The experimental work indicates the general behavior of
the thermal conductivity as a function of K¢, Ky, Vp, fiber geometry, and
its distribution, The data obtained is reliable, and it is recommended
to use this data for guidance in developing better, simple, and more

reliable models.
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APPENDIX A

COMPUTER PROGRAM

The computer program preserted in this appendix has been
designed for fibers with cylindrical cross sections and comprises the
following tasks:

1. Generates fibers in space per theory outlined in Part II.

2. When the desired number of fibers is generated, a "FIBER
DENSITY CHECK" is made., This is done by dropping a #-line perpendicular
to the base of the model (Figure 35). The amount of fibrous material
intersected by this line is calculated as follows:

a, The distance of a fiber to the #;-line is first
determined, This is done by projecting the fiber on to the x-y plane
and taking the Z,-line as a point P;. Since the coordinates of Pr and
the equation of the fiber in 2-space are known, the perpendicular distance

d can be easily determined by:

d - lAXl + Byl + Cl (/\-1)

A2+ g2

where (xj3» Y1) are the coordinates of PL and Ax +# By + (C is the equation
of the fiber projection. If d 1is greater than the radius of the fiber,
there is no intersection between the Z;-line and the fiber. If d is less
than the radius, the problem must be examined more carefully,

b, The coordinates of the intersection must now be found

and checked to see if they lie within a range slightly larger than the
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Figure 35. Diagram of a Cylindrical Fiber,



fiber projection. If the coordinates lie outside the range, no problem
exists. If within the range, the following possibilities are to be

scrutinized,
(1) If the gz-line is contained within "A" the

calculation of the fibrous material from Figure 35 is:

EF' = cste (A-2)

where EF = Vo . o2

and
OF = Fiber radius,
OE = Distance of the Z,-line to the fiber axis,
@ = Angle of the fiber relative to the x-y plane}

Note that the other relations used to obtain EF' are:

oD! - EF! (A-3)
oD EF
where 0D = OF
and op' = T (A-4)
cos 8

(2) 1If the %g-line resides in D or C, a slight variation

to A may be necessary as can be seen in Figure 35.
MG = F"E! + E'G (A-S)

using similar triangles, OH D' and EMNG:

E'G . E'l
o' 0
or .
prg = LB X (0'D") (A-6)

0
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where O'Il = (fiber radius) X (tan @)
E'H is a component of the undirected magnitude hetween the fiber extreme
and also a component of the #Z-line relative to the fiber,

(3) If the #£.-line is in C, then
o)
F"' G' = an G' - Gt E" (A-7)

The following computer listing is based on the aforementioned outline.
A detailed discussion on how to use the program is presented in Part IV,

Section D,



CaMP1
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100 CQOMMQOND»>D1s>Hs XLs START » COUNT
110 COMMONXMC500) » XHC500) s DELTX(500) »C€500)5Z(500)sA(S00) »X(500)
120 COMMINR(S00)5S¢500)5T(500),U(500)»SINP(500),CASP(500)
130 DIMENSIQNB(500),Y(500)
135 COMMONDIAG,DIAG2,CNSTF»CNSTM
140CXL IS THE LENGTH QF THE FIBER
150CD 1S THE DIAMETER QOF THE FIBER
160CD1 IS THE DIAMETER OF THE CYLINDER
170CH IS THE HEIGHT OF THE CYLINDER
180C N IS THE SAMPLE SIZE
190C N1 REP THE NR OF SAMPLES
200 DATA ST>CT/12345.50./
210 DATA N1/1/
220 DATA XLDsDDD»DID/«1255+01554+750/
230 DATA HD/.250/
244 CNSTM=.00238
250 N=0
260 START=ST
270 COUNT=CT
280 SUMB=0.
290 SUM1=0.
300 NADD=0
310 SUM2=0.
320 XL=XLD
330 D=DDD
340 D1=D1D
350 H=HD
360 DIAG=SQRT(XL*XL+D*D)
370 DIAG2=DIAG/2.
380 NNP2=2
390 NNP1=1
400 CALL FIBERCAC1),BC1)5,C(1)5XC1)5YC1),ZC1)>SINP(1),COSPC1),DELTXC1))
410 CALLEQUATCAC1)5BC1)5sCC1)sXC1)5YC1)5ZC1)5RE12,8C1)TC1)UCL),
4208 XMC1) 5 XH(1))
430 1000PRINT,"SAMPLE SIZE INCREMENT"
440 INPUT,NN
450 N=N+NN
460 NT=0
470 DQ20I=NNP2,N
480 2CALLFIBERCACI)»BCI)»CCI)»XCI),YCI)>ZCI)»SINPCI),COSP(I),
490&DELTX (1))
500 CALLEQUATCACID,BCI),CCId>XCI)>YC(I)»ZCI)5R(ID»SCIILTCIISUCID S
S10&XMCI) » XHCID)
520 J=I-1
530C P2,P3,P4 ARE CQEFF QOF P1P2
540 4 P2=ACI)-ACD)
550 P3=B(I1)-B(J)
560 P4=C(I1)=-CCJ)
570C A1,A2,A3 ARE COEFF OF v2
580 A1=ACI)-XCI)
590 A2=B(I)-YC(ID)
600 A3=C(I)-ZCI)
€10C B1,B2,B3 ARE COEFF OF VI
620 B1=ACJ) -X(J)
630 B2=B(J)-Y(J)
640 B3=C(J)-Z(J)
650C XN2,XN3,XN4 ARE COEFF OF V1XV2




Crimp CONTINUED

148
XND=A2HR3-A3%R2
KN3=A3%BI~A1%B3
S8 ANA=AI*#B2-HA2%B1 .
é@@b )3 IS5 THE ABS VAL QF MAG ViXxve
700 HANZFXNZE XN IR XN+ XN A* XN 4
y%? DjﬂbﬂRﬁ(De)
200 PERP REP PERP. DIST BETWEEN CENTER LINE QF FIBERS
PERP={PECANZ+P3¥XN3+P4*¥XN4)/D3
APTRP2ABSIPERP)
IFIABERP-DY 17231531
17 X&0=B2rXN4a-B3%XN3
O XM3=B3aXN2-Bl1&*XN4g
THO KM4=B1sXN3-B2%XN2
Y900 THE ABOVE REP THE COEFF QF NQRMAL TO PLANE Viv3a
BOO Ci=XM2FACII +XM3*B(J)+XM4*xC(D)
QIOC XN?*KP 3 XM4 C1 REP THE COEFF QF PLANE V1V3
B20 C2=AL%A01)=-A1%B(])
gan f% A3EACII-AL1*CCD)
i C C1:C2-03 REP CONSTANTS QF THE PLANE AND THE LINE INTERSECTING THE

pPLani THF FQLLOWING IS THE SQLUTION OF THE 3 EQ.
k. K4+ A1« AT*XM2+A1*A2% XM3
“1*02+A1*A1*C1+A1*C3*XM4)/D9
#CAZEC3-A3*%C2)-Al*x (XM2*xC2-A2%C1)) /D9
’Xf3*62+A1*C1) ~C3* (A1 *XM2+A2*XM3)) /D9
“’DEP“)/DS

’J)w%l)*(X(J)-Sl))l9 19,31
(6CE)=-Sa)*x(X(1)=-54))5,5,31

rd
"
=2MTH 2

&

%

§oey

2
, IF{d-1)20-2053

EGN”iﬂUL

"RINTS "FQR SAMPLE SIZE =",N," DISCARDED FIBERS",NT
FOOPRINT,"MORE FIBERS"

INFUTSFIB

IF(FIB-1.)13805,790576

T¢OPRINTS, "FIBER DENSITY CHECK"

INFPUTs DEN

IF(DEN-1,)800,900,900

EOOPRINTS"FIBER CONDUCTIVITY CONSTANT"
SUT, CNSTF

INT-"VALUES FOR DY AND DX"

4]

4

Z]

(.

"7

BT, DYs DX
Q7=0
MTATL=0
SUMB=0.
k*ME”OS

sl rw °‘FJ (%)

N
g3
S
R
T

Fm Ay
Y 58

L Oc
YZERO=YZERD+YCHANZ=-.375




COMP 1

1190
1200
1220
1255
1360
1270
1380
1390
i395
1400
1407
1410
{420
1425
1426
1430
1435
1436
1437
1438
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1750
1760
1770
1780
1785
1790
1800
i810
1820
1840
1850
1840
187C
1880
1890
1900

CONTINUED
149

1190XZERQ=XCHANZ2
XBOUN=SERT(.140625-YZERQ*YZERQ)
117S5CALL CALCN(N,XZERQOsYZERQ»SUMB,SUMLIsNTQT>NTQTL)
1600XZERQA=XZERQ+DX
IFC(ABS(XZERQ)=-XBOUNY1175»11755,1601
1601 XZERO=XCHANZ2
XZERQ=XZERQ=-DX
1605CALL CALCN(N,XZERQJ>YZERQ»SUMB,» SUMIsNTOT>NTQTL)
XZERQ=XZERQ-DX
IFCABS(XZERQ)Y-XBOUN)Y1605,160551603
1603YZERQ=YZERQ+DY
IF(YZERQ=-4375)1190,9105910
910XNTAT=NTQT
PRINT1426,XNTOT
1426FQRMATC(1X» 12HFIBER HITS =5,1P1E12+¢4)
XTATL=NTOTL
PRINT1436>XTATL
1436FQRMATC(1Xs 1 3HMATRIX HITS =51P1E124.4)
PRINT1 438, SUMBs SUMI1
1438FQARMATC(1X, THSUMKB =, 1F1E12+452X, THSUMKM =5 1P1E12.4)
SUMB={( SUMB+SUMI) Z(XNTAT+XTQTL?>
PRINT1&85, SUMB
1885FORMATC(1X» 12HAVERAGE KB =5 1PlE12.4)
sSuyMe=SumM2+SuUmMB
GATQ790
1 38ONNPI=NNP1+NN
NNP2=NNP1
GATO1000
T76STQP
END
SUBRQUTINE FIBERCAsBsCsXsY5»ZsSINP,CISP»DELTX)
COMMON DsD1sH»XLs>»STARTSCQUNT
CALL RANDCSTART,CQUNT> RND)
2 R=SQRT(RND)
R=D1/2+*R
CALL RANDCSTART>COUNT,RND)D
THETA=6.28318*RND
CALL RANDCSTART>COAOUNT,RND)
C=H*xRND
B=R*SIN(THETA)
A=R*¥CQS(THETA)
CALL RAND(START>COUNTsRND)
ALPHA=6.28318%RND
CALL RANDCSTART»> COUNTsRND)
SINP=RND
COSP=SQART(1«-SINP*SINP)
X=A+XL*CASC(ALPHA)Y*CQSP
IFCABS(X)=D1/2.)75752
T Y=B+XL*SINCALPHA)*COSFP
IF(ABS(Y)=D1/2.)8s852
8Z=C+XL*SINP
IF(Z~H)>9,9,2
g IF(Z)Y2s11511
11DELTX=ABS((D/2.)*SINP*COSC(ALPHA))
IF(DELTX=-XL)3»354
4DEL TX=XL
3 RETURN




COMP1 CONTINUED
150
1210 END
1920 SUBRQUTINE EQUATCASBsCsXsYsZsReS5>ToUsXMs XH)D .
1930C THIS RAOUTINE YIELDS THE EQ QOF PROJ ONTQ XY-PLANE IN THE FORM
1240C Y=MX+H
1950C THE EQUATIQON QF CENTER LINE OF FIBER IN THE FQRM
$960C RX+SY+TZ+U=0.
1970 XM=(B-Y)/(A-X)
0 XH=B-XM*A
Alz=X-A
Bi=Y-B
C1=z-C
R=Bi1+C1
S=C1-A]
T=-A1-B1
2050 Ce=Al1*B-Bl1*A
2060 C3=B1*C-C1*B
2070 C4=p1*%C-C1%A
2080 U=C2+C3+C4
2090 RETURN
2100 END
110 SUBROUTINE RANDCSTART,COUNT,RND)
20 5TART=10000000./ START
30C CUT OFF FIRST THREE SICGNIFICANT DIGITS OF QUOTIENT
140C TO GENERATE RANDOM NUMBER.
I18=START
F5=1S5
START=START-FS
RND=START
START=START*100000.
24 COUNT=COUNT+.1
IFCCOUNT-1000004) 45353
3 COUNT=.1
30C ADD COUNT TO PREVENT REPETITIONS
4 START=START+CQOUNT
50C CHECK SIZE OF START
IF{START-100000+7554,13
» 5 IF(START-10000:)654514
8 & IF(START-1000.)754512
20 7 IF(START-100+)8,4511
2300 8 IF(START-10)9,4,10
23i10C MULTIPLY START BY APPROPRIATE CAONSTANT TO QBTAIN NEW START
2529C WITH FIVE DIGITS BEFORE THE DECIMAL POINT.
2330 9 START=START*10020.01
RETURN
10 START=START*1000.2001
RETURN
i1 START=START*100.002
RETURN
12 START=START*10.00002
RETURN
13 START=START/10.
14 RETURN
END
SUBRQUTINE CALCN(NsXZERQ,YZERQ,SUMB> SUM1>NTQT>NTQTL) ‘
COMMON Ds>D12HsXLs START> CQUNT
COMMONXM(500) » XH(500) , DELTX(500),C(500)5,2(500),AC500),X(500)
COMMONR(500) »S(500),T(500)5,UC500)>»SINP(500),CQASP(500)
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COmMP1

2462
2465
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
=50
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2980
2990
3000
3010
3030
3040
3050

CONTINUED
151

CIMMAONDIAG,DIAG2,CNSTF,CNSTM
SijM=0.
D40I=1sN
DIST=ABS(XMC(I)*XZERQD-YZERQ+XHCI))/SORT(XMCI)*XM(I)+1.)
IF(DIST=-D/2.)415 41540
41 SLOPE=XMCI)
YINT=XH(I)
XHPRM=YZERQ+XZERQ/ SLAOPE
XVAL2=(XHPRM-YINT)/ (SLOQPE+1./SLOPE)
XDELT=DELTXC(I)
IFCCCIN=-Z (1)) 435435 42
42 XVAL=XCI)+XDELT
AVAL=ACI)-XDELT
GQTA1182
43 XVAL=X(I)-XDELT
AVAL=ACI)+XDELT
1182 IFC((XVAL2-XVAL)*(XVAL2-AVAL))é61:,61, 40
61 YVAL=XHPRM-XVALZ2/SLOPE
ZVAL=- (RCID*XVAL2+SC(I)*YVAL+UCI))/TCD)
DELPX=ABS(Z(1)-ZVAL)
DELPX=DELPX/SINPCI)
IF(XDELT-DELPX)72,72,71
72 DELPX=ABS(C(I)>=-ZVAL)
DELPX=ABS(DELPX/ SINP(I)})
71 XLOC=(2./XDELT)*ABS(XZERO'(AVAL*XVAL)/2.)-(XVAL‘AVAL)/XDELT*I-
MLQAC=XLaC
CA=SQRT(D*D/ 4.-DIST*DIST)
CAPRM=ABS(CA/CQASP(I))
VERT=DELPX*CAPRM/XDELT
IF(VERT-DIAG2)83,83,84
84 VERT=DIAGZ2
83 IF(MLAC) 44, 45,5 46
44 IFC(CAPRM=-DIAG2) 495 495 48
48 CAPRM=DIAG
49 CAPRM=2.*CAPRM
GDTA5a4
45 IF(VERT-CAPRM)S51551,52
S1 CAPRM=2.*¥VERT
(ATA54
52 CAFPRM=CAPRM+VERT
GCATAS4
46 I1F(VERT-CAPRM)56557+55
56 CAPRM=CAPRM~-VERT
GITA54
57 CAPRM=VERT
GITS4
55 CAPRM=VERT-CAPRM
S4 SHM=StIM+CAPRM
40 CONTINUE
IFCSUM-HY1720,1720,1730
1730SiM=H .
1720IF(SUUM) 1670516701660
1660SUMM=SUM/H
CNSTB=CNSTF*CNSTM/(SUMM*CNSTM*CNSTF*(IO'SUMM))

200FQRMATC(4E12.3)
NTOT=NTQT+1
SUMB=SUMB+CNSTB
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APPENDIX B

DEFINITIONS OF STATISTICAL AND CHEMICAL TERMS

1. Population: Any finite or infinite collection of individual things,
objects, or events.

2., Sample: A portion of the population.

3. Distribution: Refers to the distribution of a characteristics or
a group of characteristics in a population (it is usually obtained
by measurements).

4. Random Sampling (Simple): This type of sampling is defined by the
requirement that each individual in the population has an equal chance
of being the first member of the sample; after the first member is
selected, each of the remaining individuals in the population has an
equal chance of being the second member of the sample; and so forth.

5. Selection of a Random Sample: It is advisable to use a table of
random numbers as an aid in selecting the sample,

6. Properties of Distributions:

Normal or Gaussian distribution, symmetrical bell-shaped
curve, is completely determined by:

m, the arithmetic mean (center of gravity) of the

distribution and

o , the standard deviation (radius of gyration about m).

crz, is the variance of the distribution (second moment about m).
Z, is the distance from the population mean in units of O

and is -ifié}fgwhere x represents any value in the population.
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P, the proportion of elements in the population which ’
have values of Z smaller than any given Z (P is found from table on
page 549 of reference 28) if Z is known,
The following graph shows these percentages of the population
in various intervals of Z. Example: 34,13% of the population will

have values of Z between 0 and 1 (or 0 and -1).

A

34.13%
B

13.59%

c
2.14%
4%

-3 -2 -1 0 | 2 3 |
7. Estimation of m and O :
| n
meXe g X ox
I:
n n 2
n }: xf - }E x;)
2 2_ 0=l i=1 ~
x =S nin-1)

2
(n—I)q(Z:S(xz)—:]—[S(x)]

m and O will differ from sample to sample.

8. Confidence Interval: An interval within which we estimate a given
population parameter to lie (e.g., the population mean m with respect
to some characteristic). Inasmuch as estimates of m and O vary from

sample to sample, interval estimates of m and O may sometime be




10.

11,

12,
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preferred to "single-value' estimates. Provided we have a random
sample from a normal population, we can make interval estimates of

m or ¢ with a chosen degree of confidence.

Y - The confidence coefficient is simply the proportion of samples

of size n for which intervals computed by the prescribed method may
be expected to bracket m (or o ). Such intervals are known as confi-
dence intervals. As we would expect, large (size) samples tend to
give narrower confidence intervals for the same level of confidence.
Statistical Tolerance Limits: For a given population, are limits
within which we expect a stated proportion of the population to lie
with respect to some measurable characteristics.

Engineering Tolerance Limits: Are specified outer limits of accepta-
bility with respect to some characteristic usually prescribed by a
design engineer.

Choice of Null and Alternative Hypotheses: Null hypothesis is con-
sidered to be the hypothesis under test as against a class of alter-
native hypotheses. The null hypothesis acts as a kind of "origin" or
"base" (in the sense of "base line") from which the alternative
hypotheses deviate in one way or another to greater and lesser degrees.
Two Kind of Errors:

Error of the First Kind: If we reject the null hypothesis when it is
true; e.g., announce a difference which really does not exist,

Error of the Second Kind: If we fail to reject a null hypothesis when
it is false. Although we do not know in a given instance whether we
have made an error of either kind, we can know the probability of

making either type of error.




13,

14,

15,

Significance Level and Operating Characteristics (0OC) Curve of a

Statistical Test:
Q - Level of Significance, is the risk of making an error of the
first kind. [3 - The risk of making an error of the second kind
varies, as one would expect, with the magnitude of the real differ-
ence and is summarized by the Operating Characteristics (0C) curve
of the test, Also, the risk /3 increases as the risk (@ decreased
"Only with large samples can we have our cake and eat it too" - and
then there is the cost of the test to worry about.
Choice of the Significance Level: The significance level Q of a
statistical test should be chosen in the light of the attending
circumstances, including cost. We are occasionally limited in the choice
of significance level by the availability of necessary tables for
some statistical tests. Two values of @, Q= .05 and Q = .01,
have been most frequently used in research and development work and are
given in tabulations of test statistics. We have adopted these "standards"
for the purpose of this study.
Confidence Intervals for the Population Mean When Knowledge of the
Variability Cannot be Assumed:
Problem: What is a two sided 100 (1 - @ )% confidence interval for
the true mean m?
Procedure:

1. Choose Q.

2. Compute X and S.

3. Look up t = t, -a/2 for n - 1 degrees of freedom (page

583, reference 28), .




16.

17,

18,

4, Compute:

Xypper = X * S//n

xLower =X -t S/ /n

Conclusion: 1i,e., we may assert that with 100 (1 - g )% confidence that

X, < m < Xy or the interval from X, to Xy is a 95% confidence

L
interval for the lot mean; i.e., we may assert with 95% confidence
that X; < lot mean < Xj.
Number of Measurements Required to Establish the Mean With Prescribed
Accuracy:
Procedure:

1. Choose d, the allowable margin of error, and Q , the risk

that our estimate of n will be off by d or more.
2. Look up t _(1/2 for V degrees of freedom.(page 583, refer-

ence 28).

3. Compute 1n or sample size:

Conclusion: We may conclude that if we now compute the mean X of a
random sample of size n from the population, we may have 100 (1 - o )%
confidence that the interval (X - d) to (X + d) will include the
population mean m.

Amines: Organic derivatives of ammonia; these may be primary, secondary,
or tertiary, depending on the number of hydrogen atoms that have been
replaced by organic radicals.

Radical: A group of atoms which occurs in the molecules of a number

of compounds, and which remains unchanged through many chemical

reactions, Example: Ethyl CoHg (valence 1)
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20,

21.

22,

23,

24,

25,

26,

27,

28,

Valence: An intiger representing the number of hydrogen or chlorine
atoms which one atom of an element can hold in combination. Note:
groups of atoms, i.e., radicals, also have valences,

Amino Acids: A compound that contains both an amine group and a
carboxy group.

Carboxyl (or the compound name Carboxylic): A term for the -COOH-
group, the radical characteristic of all organic acids.

Polyamide Resins: Resins made from polymerized vegetable oil acids.
Polymerized Oils: Vegetable and animal oils which have been heated
and agitated by a current of air or oxygen. They are partially
oxidized, deodorized, and polymerized by the treatment and are
increased in density, viscosity, and drying power.

Polymers: A molecule made up of hundreds, thousands, and even tens

of thousands of repeating units called monomers.

Monomers: Are usually simple, reactive organic molecules which react

with one another to link together over and over again and form giant
molecules, the polymers, which often have molecular weights running
into the millions,

Polymerization: A union of monomers.

Condensation Products: Some polymers are formed by condensation reac-

tions which, in most instances, involve the elimination of a simple
molecule such as water or ammonia,

Oxidation: In a broad sense, oxidation is the increase in positive

valence or decrease in negative valence of any element in a substance.

On the basis of the electron theory, oxidation is a process in which

an element loses electrons. In a narrow sense, oxidation means the
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29.

30.

31,

32.

33.

34.

35.

36.

37.

chemical addition of oxygen to a substance.

Exothermic Reactions: Chemicals combining to form stable compounds

and which give off energy in the process.

Exothermic: Refers to a process which is accompanied by evolution of
heat,

Epoxy: A prefix in organic nomenclature denoting an oxygen atom joined
to each of two atoms which are already united in some other way, as

"C_O"Co

———
"Epon" Resins: Trademark for a series of condensation products of
epichlorohydrin and bisphenol - A, having excellent adhesion, strength,
chemical resistance and electrical properties when formulated into

protective coatings, adhesives, and structural plastics.

Epoxy Resins: Thermosetting resins based on the reactivity of the

0
/' \

epoxide group _ ¢ ’c—

Epoxidation: The reaction of oxygen with an olifin (a class of
unsaturated, aliphatic hydrocarbons of the teneral form C, H,, and
named after the corresponding paraffins by adding 'ene" or ylene" to
the stene: as ethylene, propylene, butenes, etc.) to form an epoxy
compound.

f&(x) = distribution function of the random variable X defined for
any real number Xx.

as . . _d
fx(x) = probability density function: fX(x) = Fx(x)

the expectation, or mean of X, when it exists is defined by:

o0
J‘ X fX (x) dx
~oc

E[X]

E[X]
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APPENDIX C
YATES® METHOD FOR OBTAINING ESTIMATES OF MAIN EFFECTS AND
INTERACTION FOR TWO-LEVEL FACTORIALS o
¢ YATES METHOD FOR OBTAINING ESTIMATES OF MAIN EFFECTS AND

¢ INTERACTION FOR TEO=LEVEL FACTORIALS

DIMENSION TAB(3Z2:5)TEMP (32}

READ{READER s SOOINeALPH, TA

500 FORMAT(15¢5X02F1040)

ANHNM

MRAZHEN

A ENR

REALD{READERSOS) ({TAB(TeJ) s JB103) 1 I#]1NR)

505 FORMAT(AS05Xe2F1040)

c FUT RESPONSE IN 5AVE AREA - e

DO 1 I&LNR .

1 TEMPLIISTAB(I+3) . B

¢ PERFORM N¥#2 ADDITIONS AND SUBTRACTIONS TO OBTAIN GTGAWETC,
c FINAL VALUES OF G ARE IN COLUMN JJ OF TAB

JEED

D@ d 1%19NPH

CTAEIIWJJUIATAB(IE 1 J)+TABLIOW)

TAB(IIPNRH o JJIHTAB(IE Jy=TAB(IO0eJ)

IERIE+2 R _h.

2 10¢10%2

PoUMA L

JEJJ
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4 JJHIDUM e
Jdgd
c DIVIDE VALUES OF G BY 2% (N=1)
DO 6 IR1NR e
6 TAB(IS)HTAB(I1JJ)/(2enwk(N=1))
c CALCULATE S2 WHICH IS THE SUM OF THE SQUARES OF G S
5240,
DO 10 I#1+NR
IF(TAB(112)=3,)1018+8 )
8 S2HTAB(I1+JJU)*TAB(I1JJ)+S52 .
10 CONTINUE )
c CALCULATE NU AND W
UN#RN-O.S*(AN*AN+AN¥2-)
S28S2/ (RN*UN)
WHTA*SQRT (RN*S2)
| DO 11 I#1NR
i 11 wRITE(PRINTERv510)TAB(i01)oTAB(IvZ)OTEMP(I)OTAB(IvdJ)0TAB(lq§l~
i 510 FORMAT (10X ¢AS15X1E14¢2¢3E2048)
FEED(3) -
_ WRITE(PRINTER:S515)S2+W o -
515 FORMAT (10X ¢3HS24F15.8110X12HWHF10:5¢//)
o IF ABS(G(I)) 1S GREATER THAN W THEN PRINT G(I)
DO 14 I#1WNR
IF(ABS(TAB(IeJJ))=W)14414012
, 12 WRITE(PRINTER1520)TAB(1¢JJ) o
. 520 FORMAT(E20,8)
14 CONTINUE
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APPENDIX D

DISTRIBUTION OF THE NEAREST NEIGHBOR IN A POISSON DISTRIBUTION
OF FIBERS IN SPACE

Reference 40 was used for the following analysis, If particles
or fibers are distributed in a 3-dimensional space in accordance with a

Poisson process at a mean rate or intensity L/ per unit volume, then

p vy =€ YV nk (D-1)
K!

considers the probability of finding exactly K particles in a fixed
volume V, In particular, the probability of no particles in a volume V
is

p o,y =e ¥ (D-2)

and the probability of one or more particles is therefore

e - vy

1 - (D-3)
From Appendix B, definition 35,
FX (x) = P [ X < x] (D-4)
and from definition 36
fy (0 = S F(x) (D-5)
dx



1f 8 is the distance between an individual fiber and its nearest

neighbor, then

3 .y 4 3
D (O,V% Té’ Y =€ ‘/3'77 é (D-6)
or
d -V dqxs
Fo(x) = e Rl
dx
_ .2 T 403
= 4T1Y X% exp {- gTNX g (b=-7)

To find the mean distance, [ [8], between a fiber and its nearest neighbor,

definition 37 of Appendix B is used:

/OO
E [8] = \ X frgy (0 dx (D-8)
4
hence ° 1 N Y
(8] - (&) sy
or
T [8] = o554/ "1/ (D-9)

where L/ is equal to the number of fibers per unit volume. The fiber

volume ratio

v. = nVf (D-10)

Substituting equation (D-10) into (D-9) for 3/ , the following expression,

for 8

, is obtained:

163




5 0.554
= — (D-11)

3
v VR/Vf

where VR is the fiber volume ratio and Vf is the volume of 1 fiber. Once
8 is determined, the average thermal conductivity is found in a similar
procedure outlined in Part II, Section A,

Or

I’<f I'<m
= (D-12)

"B (B

where L is the length of the model. Note that if & is equal to zero, K

B

is equal to Kgo  Results from this theory are presented in Tables XIV

through XVII,
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